Цитоплазма клетки. Цитоплазма: химический состав, строение и основные функции. Что мы узнали

Цитоплазма клетки. Цитоплазма: химический состав, строение и основные функции. Что мы узнали

15.11.2020

Цитоплазматическая, или клеточная, мембрана (плазмалемма) - это биологическая мембрана, окружающая протоплазму (цитоплазму) живой клетки. В основе строения лежит двойной слой липидов - во­донерастворимых молекул, имеющих полярные «головки» и длинные неполярные «хвосты», представленные цепями жирных кислот; больше всего в мембранах содержится фосфолипидов, в головках ко­торых имеются остатки фосфорной кислоты.

Хвосты липидных моле­кул обращены друг к другу, полярные головки смотрят наружу, обра­зуя гидрофильную поверхность. С заряженными головками соединяются белки, которые называют периферическими мембран­ными белками. Другие белковые молекулы могут быть погружены в слой липидов за счет взаимодействия с их неполярными хвостами. Часть белков пронизывает мембрану насквозь, образуя каналы или поры. У некоторых клеток мембрана является единственной структу­рой, служащей оболочкой, у других клеток поверх мембраны имеется дополнительная оболочка (например, целлюлозная оболочка у расти­тельных клеток). Животные клетки снаружи от мембраны бывают по­крыты гликокаликсом - тонким слоем, состоящим из белков и поли­сахаридов.

Клеточная мембрана выполняет множество важных функций, от которых зависит жизнедеятельность клеток. Одна из них заключается в образовании барьера между внутренним содержимым клетки и внешней средой. Наряду с этим мембрана обеспечивает обмен ве­ществ между цитоплазмой и внешней средой, из которой в клетку че­рез мембрану поступают вода, ионы, неорганические и органические молекулы. Во внешнюю среду через мембрану выводятся продукты, образованные в клетке (продукты обмена и вещества, синтезирован­ные в клетке).

Таким образом, через мембрану осуществляется транспорт ве­ществ. Крупные молекулы биополимеров поступают через мембрану благодаря фагоцитозу - явлению, впервые описанному И.И. Мечни­ковым. Процесс захвата и поглощения капелек жидкости происходит путем пиноцитоза. Важную роль в жизнедеятельности клетки играет рецепторная функция мембраны. В мембранах имеется большое чис­ло рецепторов - специальных белков, роль которых заключается в передаче сигналов извне внутрь клетки.

Клеточное ядро - это окруженная оболочкой, состоящей из двух мембран, часть клетки диаметром 3-10 мкм. Между наружной и внут­ренней мембранами есть узкое пространство (30 нм), заполненное по­лужидким веществом. Ядерная мембрана имеет такое же строение, как и плазматическая мембрана. В ядерной оболочке есть множество пор, через которые идет процесс обмена веществ между ядром и ци­топлазмой. Под ядерной оболочкой находится ядерный сок (карио­плазма), в котором содержатся ядрышки и хромосомы.

Ядрышки - это округлые тельца диаметром от 1 мкм до несколь­ких мкм. В ядре может быть несколько ядрышек. В состав ядрышек входят РНК и белок. Ядрышки образуются на определенных участках хромосом; в них синтезируется рибосомальная РНК (рРНК). В яд­рышках происходит формирование больших и малых субъединиц ри­босом. Ядрышки видны только в неделящихся клетках.

Хромосомы (гр. хрома - краска и сома - тело) были так названы в связи со способностью к интенсивному окрашиванию - важней­ший органоид ядра, содержащий ДНК в комплексе с основным бел­ком - гистоном. Этот комплекс составляет около 90% вещества хро­мосом.

Хромосомы могут иметь длину, в десятки и сотни раз превышающую диаметр ядра. В интерфазу (период между делениями) хромосомы видны только под электронным микроскопом и представ­ляют собой длинные тонкие нити, именуемые хроматином (деспира- лизованное состояние хромосом). В этот период идет процесс удвое­ния (редупликации) хромосом; в конце интерфазы каждая хромосома состоит из двух хроматид. Каждая хромосома имеет первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины. Центромера служит местом прикрепления нити веретена деления. У ядрышковых хромосом имеется еще вторичная перетяжка, где формируется ядрышко.

Функция хромосом заключается в контроле над всеми процессами жизнедеятельности клетки. Хромосомы являются носителями генов, то есть носителями генетической информации. Наследственная ин­формация передается путем репликации молекулы ДНК. Число, раз­мер и форма хромосом строго определены и специфичны для каждого вида.

В половых клетках и в спорах у растений имеется одинарный (га­плоидный) набор хромосом, в соматических клетках - двойной (ди­плоидный) набор. Бывают также полиплоидные клетки. Различают гомологичные (парные, соответствующие) и негомологичные хромо­сомы. Хромосомы, определяющие развитие пола, называют половы­ми. Остальные хромосомы называют аутосомами.

Цитоплазма (гр. цитос - клетка и плазма - вылепленная) - живое содержимое клетки, кроме ядра. Состоит из мембран и орга­ноидов (ЭПС, рибосом, митохондрий, пластид, аппарата Гольджи, ли- зосом, центриолей и др.), пространство между которыми заполнено коллоидным раствором - гиалоплазмой. Снаружи цитоплазма огра­ничена клеточной мембраной, внутри - мембраной ядерной оболоч­ки. У растительных клеток имеется еще и внутренняя пограничная мембрана, отделяющая клеточный сок и образующая вакуоль.

Цитоплазма содержит большое количество воды с растворенными в ней солями и органические вещества. Цитоплазма - это среда для внутриклеточных физиологических и биохимических процессов. Она способна к движению - круговому, струйчатому, ресничному.

Эндоплазматическая сеть (ЭПС), или эндоплазматический рети­кулум (ЭПР), - это сеть каналов, пронизывающая всю цитоплазму. Стенки этих каналов представляют собой мембраны, контактирую­щие со всеми органоидами клетки. ЭПС и органоиды вместе состав­ляют единую внутриклеточную систему, которая осуществляет обмен веществ и энергии в клетке и обеспечивает внутриклеточный транс­порт веществ. Различают гладкую и гранулярную ЭПС. Гранулярная ЭПС состоит из мембранных мешочков (цистерн), покрытых рибосо­мами, благодаря чему она кажется шероховатой (шероховатая ЭПС). ЭПС может быть и лишена рибосом (гладкая ЭПС); ее строение бли­же к трубчатому типу. На рибосомах гранулярной сети синтезируют­ся белки, которые затем поступают внутрь каналов ЭПС, где и приоб­ретают третичную структуру. На мембранах гладкой ЭПС синтези­руются липиды и углеводы, которые также поступают внутрь каналов ЭПС.

ЭПС выполняет следующие функции: участвует в синтезе органи­ческих веществ, транспортирует синтезированные вещества в аппарат Гольджи, разделяет клетку на отсеки. Кроме того, в клетках печени ЭПС участвует в обезвреживании ядовитых веществ, а в мышечных клетках играет роль депо кальция, необходимого для мышечного со­кращения.

ЭПС имеется во всех клетках, исключая бактериальные клетки и эритроциты; она составляет от 30 до 50% объема клетки.

Комплекс (аппарат) Гольджи - это сложная сеть полостей, тру­бочек и пузырьков вокруг ядра. Состоит из трех основных компонен­тов: группы мембранных полостей, системы трубочек, отходящих от полостей, и пузырьков на концах трубочек. Комплекс Гольджи вы­полняет следующие функции: в полостях накапливаются вещества, которые синтезируются и транспортируются по ЭПС; здесь они под­вергаются химическим изменениям. Модифицированные вещества упаковываются в мембранные пузырьки, которые выбрасываются клеткой в виде секретов. Кроме того, пузырьки используются клеткой в качестве лизосом.

Лизосомы {гр. лизио - растворять, сома - тело) - это неболь­шие пузырьки диаметром порядка 1 мкм, ограниченные мембраной и содержащие комплекс ферментов, который обеспечивает расщепле­ние жиров, углеводов и белков. Они участвуют в переваривании час­тиц, попавших в клетку в результате эндоцитоза, и в удалении отми­рающих органов (например, хвоста у головастиков), клеток и органоидов. При голодании лизосомы растворяют некоторые орга­ноиды, не убивая при этом клетку. Образование лизосом идет в ком­плексе Гольджи.

Митохондрии {гр. митос - нить и хондрион - гранула) - внут­риклеточные органоиды, оболочка которых состоит из двух мембран. Наружная мембрана - гладкая, внутренняя образует выросты, назы­ваемые кристами. Внутри митохондрии находится полужидкий мат­рикс, который содержит РНК, ДНК, белки, липиды, углеводы, фер­менты, АТФ и другие вещества; в матриксе имеются также рибосомы.

Размеры митохондрий от 0,2-0,4 до 1-7 мкм. Количество зависит от вида клетки, например, в клетке печени может быть 1000-2500 мито­хондрий. Митохондрии могут быть спиральными, округлыми, вытя­нутыми, чашевидными и т.д.; могут также менять форму.

Функции митохондрий связаны с тем, что на внутренней мембра­не находятся дыхательные ферменты и ферменты синтеза АТФ. Бла­годаря этому митохондрии обеспечивают клеточное дыхание и синтез АТФ.

Митохондрии могут сами синтезировать белки, так как в них есть собственные ДНК, РНК и рибосомы. Размножаются митохондрии де­лением надвое.

По своему строению митохондрии напоминают клетки прокариот; в связи с этим предполагают, что они произошли от внутриклеточных аэробных симбионтов. Митохондрии имеются в цитоплазме клеток большинства растений и животных.

Хлоропласты относятся к пластидам - органоидам, присущим только растительным клеткам. Это зеленые пластинки диаметром 3- 4 мкм, имеющие овальную форму. Хлоропласты, как и митохондрии, имеют наружную и внутреннюю мембраны. Внутренняя мембрана образует выросты - тилакоиды, тилакоиды образуют стопки - гра­ны, которые объединяются друг с другом внутренней мембраной. В одном хлоропласте может быть несколько десятков гран. В мембра­нах тилакоидов находится хлорофилл, а в промежутках между грана­ми в матриксе (строме) хлоропласта находятся рибосомы, РНК и ДНК. Рибосомы хлоропластов, как и рибосомы митохондрий, синте­зируют белки. Основная функция хлоропластов - обеспечение про­цесса фотосинтеза: в мембранах тилакоидов идет световая фаза, а в строме хлоропластов - темновая фаза фотосинтеза. В матриксе хло­ропластов видны гранулы первичного крахмала, то есть крахмала, синтезированного в процессе фотосинтеза из глюкозы. Хлоропласты, как и митохондрии, размножаются делением. Таким образом, в мор­фологической и функциональной организации митохондрий и хлоро­пластов есть общие черты. Основная характеристика, объединяющая эти органоиды, это то, что они имеют собственную генетическую ин­формацию и синтезируют собственные белки.

Клеточный центр относится к немембранным компонентам клет­ки. В состав его входят микротрубочки и две центриоли. Центриоли находятся в середине центра организации микротрубочек. Центриоли

обнаружены не во всех клетках, имеющих клеточный центр (напри­мер, их нет у покрытосеменных растений). Каждая центриоль - это цилиндр размером около 1 мкм, по окружности которого расположе­ны девять триплетов микротрубочек. Центриоли располагаются под прямым углом друг к другу. Клеточный центр играет важную роль в организации цитоскелета, так как цитоплазматические микротрубоч­ки расходятся во все стороны из этой области. Перед делением цен­триоли расходятся к противоположным полюсам клетки, и возле каж­дой из них возникает дочерняя центриоль. От центриолей протягиваются микротрубочки, которые образуют митотическое ве­ретено деления. Часть нитей веретена прикрепляется к хромосомам. Формирование нитей веретена происходит в профазе.

Рибосомы - это субмикроскопические органоиды диаметром 15- 35 нм, которые были открыты во всех клетках с помощью электрон­ного микроскопа. В каждой клетке может быть несколько тысяч ри­босом. Рибосомы могут быть ядерного, митохондриального и пла- стидного происхождения. Большая часть образуется в ядрышке ядра в виде субъединиц (большой и малой) и затем переходит в цитоплазму. Мембран нет. В состав рибосом входят рРНК и белки. На рибосомах идет синтез белков. Большая часть белков синтезируется на шерохо­ватой ЭПС; частично синтез белков идет на рибосомах, находящихся в цитоплазме в свободном состоянии. Группы из нескольких десятков рибосом образуют полисомы.

К клеточным органоидам движения относят реснички и жгу­тики - выросты мембраны диаметром около 0,25 мкм, содержащие в середине микротрубочки. Такие органоиды имеются у многих клеток (у простейших, одноклеточных водорослей, зооспор, сперматозоидов, в клетках тканей многоклеточных животных, например, в дыхатель­ном эпителии).

Функция этих органоидов заключается или в обеспечении движе- . ния (например, у простейших), или в продвижении жидкости вдоль поверхности клеток (например, в дыхательном эпителии для продви­жения слизи).

Клетки могут передвигаться также с помощью образования лож­ноножек (псевдоподий; например, амебы и лейкоциты), но псевдопо­дии - временные образования, которые не относят к органоидам дви­жения.

Клеточные включения - это непостоянные структуры клетки. К ним относятся капли и зерна белков, углеводов, жиров, а также кри­сталлические включения - органические кристаллы, которые могут образовывать в клетках белки, вирусы, соли щавелевой кислоты и т.д., и неорганические кристаллы, образованные солями кальция. В отличие от органоидов эти включения не имеют мембран или элементов цитоскелета и периодически синтезируются и расхо­дуются.

Капли жира используются как запасное вещество в связи с его вы­сокой энергоемкостью; зерна углеводов в виде крахмала у растений и в виде гликогена у животных и грибов - как источник энергии для образования АТФ; зерна белка - как источник строительного мате­риала, соли кальция - для обеспечения процесса возбуждения, обме­на веществ и т.д.

Выберите один правильный ответ.

В клетках растений, грибов и бактерий клеточная стенка состоит

1) только щ белков 3) из белков и липидов

2) только из липидов 4) из полисахаридов

Гликокаликс - это наружный слой клеток

1) животных

2) всех прокариот

Двумембранное строение имеют

1) митохондрии

2) лизосомы

Пластиды имеются в клетках

1) всех растений

2) только животных

Хлоропласты - это органоиды клетки, в которых

1) происходит клеточное дыхание

2) осуществляется процесс фотосинтеза

3) находятся пигменты красного и желтого цвета

4) накапливается вторичный крахмал

6. В митохондриях происходит

1) накопление синтезируемых клеткой веществ

2) клеточное дыхание с запасанием энергии

3) формирование третичной структуры белка

4) темновая фаза фотосинтеза

7. Шероховатой эндоплазматической сетью называется такая сеть, на стенках которой находится много

1) митохондрий 3) рибосом

2) лизосом 4) лейкопластов

8. На мембранах агранулярной эндоплазматической сети проис­ходит синтез

1) АТФ 3) нуклеиновых кислот

2) углеводов 4) белков

9. Функция комплекса Гольджи заключается в

1) (накоплении белков для последующего выведения

2) синтезе белков и последующем их выведении

3) накоплении белков для последующего расщепления

4) синтезе белков и последующем их расщеплении

10. Пищеварительные ферменты содержатся в

1) рибосомах 3) митохондриях

2) лизосомах 4) лейкопластах

11. Л изосомы участвуют в

1) транспорте веществ, синтезированных в клетке

2) накоплении, химической модификации и упаковке синтези­рованных в клетке веществ

3) синтезе белков

4) удалении отживших органоидов клетки

12. Клеточный центр участвует в

1) синтезе АТФ

2) хранении генетической информации

3) формировании веретена деления

4) синтезе рибосом

13. Основными структурами клеточного центра являются

1) тилакоиды 3) центриоли

2) граны 4) мембранные пузырьки

14. Ядрышко участвует в

1) энергетическом обмене

2) синтезе рибосом

3) организации деления клетки

4) транспорте синтезированных в клетке веществ

15. Хромосомы состоят из

1) ДНК 3) РНК

2) ДНК и белков 4) РНК и белков

Выберите три правильных ответа.

16. Мембранными клеточными органоидами являются

1) лизосомы

2) рибосомы

3) эндоплазматическая сеть

4) центриоли

5) комплекс Гольджи

6) микротрубочки цитоскелета

17. Эндоплазматическая сеть

1) является источником клеточных лизосом

2) участвует в синтезе органических соединений

3) обеспечивает транспорт веществ

4) делит клетку на отдельные отсеки

5) формирует рибосомы

6) обеспечивает удаление отмирающих органоидов клетки

18. Плазмалемма

1) является барьером между цитоплазмой клетки и внешней средой

2) обеспечивает транспорт аминокислот к месту синтеза белка

3) обеспечивает избирательный транспорт веществ в клетку

4) участвует в межклеточных взаимодействиях

5) служит депо запасных питательных веществ

6) участвует в накоплении и химической модификации ве­ществ, синтезированных в клетке

19. Рибосомы

1) окружены двойной мембраной

2) находятся на поверхности шероховатой эндоплазматиче­ской сети

3) состоят из двух субъединиц

4) осуществляют внутриклеточное пищеварение

5) формируют веретено деления

6) участвуют в синтезе белка

20. Ядерная оболочка

1) имеет толщину около 30 нм

2) отделяет ядро от цитоплазмы

3) является непроницаемой для молекул нуклеиновых кислот

4) состоит из двух мембран

5) пронизана порами

6) не содержит фосфолипидов

21. Установите соответствие между органоидом клетки и функци­ей, которую он выполняет.


Ключи к заданиям

№ вопроса 1 2 3 4 5 6 7 8 9 10
ответ 4 1 1 1 2 2 3 2 1 2
№ вопроса 11 12 13 14 15 16 17 18 19 20
ответ 4 3 3 2 2 1,3,5 2,3,4 1,3,4 2,3,6 2,4,5

Задание 21
1 2 3 4 5 6
А Б В А А В

Сегодня вы сможете узнать, что такое цитоплазма в биологии. Помимо этого, предлагаем обратить внимание на множество интересных вопросов:

  1. Организация клетки.
  2. Гиалоплазма.
  3. Свойства и функции цитоплазмы.
  4. Органоиды и так далее.

Для начала предлагаем ввести для неизвестного термина определение. Цитоплазма - это та часть клетки, которая находится за пределами ядра и ограничивается мембраной. Все содержимое клетки, включая ядро - это протоплазма.

Важно обратить внимание на то, что именно здесь происходят важные метаболические процессы. В цитоплазме происходит:

  • поглощение ионов и других метаболитов;
  • транспортировка;
  • образование энергии;
  • синтез белковых и небелковых продуктов;
  • клеточное пищеварение и так далее.

Все вышеперечисленные процессы поддерживают жизнеспособность клетки.

Типы структурной организации клетки

Ни для кого не секрет, что все ткани и органы образованы из мельчайших частиц - клеток.

Ученые смогли выделить всего два их вида:

  • прокариотические;
  • эукариотические.

Самые простые формы жизни содержат одну-единственную клетку и размножаются при помощи ее деления. Приведенные две формы клеток имеют некоторые отличия и сходства. В прокариотических клетках отсутствует ядро, а хромосома находится непосредственно в цитоплазме (что такое цитоплазма в биологии было сказано ранее). Это строение присутствует у бактерий. Другое дело - эукариотическая клетка. О ней мы поговорим в следующем разделе.

Эукариотическая клетка

Данный вид имеет более сложное строение. ДНК связана с белком и находится в хромосомах, которые, в свою очередь, располагаются в ядре. Этот органоид отделен при помощи мембраны. Несмотря на большое количество отличий, у клеток есть нечто общее - внутреннее содержимое наполнено коллоидным раствором.

Цитоплазма клетки (или коллоидный раствор) является важной составляющей. Она имеет полужидкое состояние. Там же мы можем обнаружить:

  • канальцы;
  • микротрубочки;
  • микрофиламенты;
  • филаменты.

Цитоплазма - это коллоидный раствор, в котором происходит движение коллоидных частиц и других компонентов. Сам раствор состоит из воды и других соединений (как органических, так и неорганических). Именно в цитоплазме располагаются органоиды и временные включения.

Различия между цитоплазмой растительной и животной клетки

Определение цитоплазмы мы уже ввели, теперь выявим отличия коллоидного раствора у животных и растительных клеток.

  1. Цитоплазма растительной клетки. В ее составе мы можем обнаружить пластиды, которых всего насчитывается три вида: хлоропласты, хромопласты и лейкопласты.
  2. Цитоплазма животной клетки. В данном случае мы можем наблюдать два слоя цитоплазмы - эктоплазму и эндоплазму. Наружный слой (эктоплазма) содержит огромное количество микрофиламента, а внутренний слой - органоиды и гранулы. При этом эндоплазма менее вязкая.

Гиалоплазма

Основа цитоплазмы клетки - гиалоплазма. Что это такое? Гиалоплазма - это раствор, который неоднородный по своему составу, слизистый и бесцветный. Именно в данной среде протекает обмен веществ. Часто применяется относительно гиалоплазмы термин "матрикс".

В состав входят:

  • белки;
  • липиды;
  • полисахариды;
  • нуклеотиды;
  • аминокислоты;
  • ионы неорганических соединений.

Гиалоплазма представлена двумя формами:

  • гель;
  • золь.

Между двумя данными фазами есть взаимопереходы.

Вещества коллоидного раствора клетки

Что такое цитоплазма в биологии, мы уже пояснили, теперь предлагаем переходить к рассмотрению химического состава коллоидного раствора. Все вещества, которые входят в состав клетки, можно разделить на две обширные группы:

  • органические;
  • неорганические.

В первой группе находятся:

  • белки;
  • углеводы (моносахариды, дисахариды и полисахариды);
  • жиры;
  • нуклеиновые кислоты.

Немного подробнее об углеводах. Моносахариды - фруктоза, глюкоза, рибоза и другие. Крупные полисахариды состоят из моносахаридов - крахмала, гликогена и целлюлозы.

  • вода (девяносто процентов);
  • кислород;
  • водород;
  • углерод;
  • азот;
  • натрий;
  • кальций;
  • сера;
  • хлор и так далее.

Свойства цитоплазмы

Говоря о том, что такое цитоплазма в биологии, нельзя обойти стороной вопрос о свойствах коллоидного раствора.

Первая и очень важная особенность - циклоз. Другими словами, это движение, которое происходит внутри клетки. Если данное движение останавливается, то клетка сразу же погибает. Скорость циклоза напрямую зависит от некоторых факторов, таких как:

  • свет;
  • температура и так далее.

Второе свойство - вязкость. Данный показатель изменяется в зависимости от организма. Вязкость цитоплазмы напрямую зависит от обмена веществ.

Третья особенность - полупроницаемость. Наличие пограничных мембран в цитоплазме позволяет некоторые молекулы пропускать, а другие задерживать. Эта избирательная проницаемость играет важную роль в жизнедеятельности клетки.

Органоиды цитоплазмы

Все органоиды, входящие в состав клетки, можно разделить на две группы.

  1. Мембранные. Это замкнутые полости (вакуоль, мешочек, цистерна). Данное название они получили, потому что содержимое органоида отделено от цитоплазмы при помощи мембраны. При этом все мембранные органоиды можно разделить еще на две группы: одномембранные и двумембранные. К первым относят эндоплазматический ретикулум, комплекс Гольджи, лизосомы, пероксисомы. Важно заметить, что все одномембранные органоиды взаимосвязаны между собой и создают единую систему. К двумембранным органоидам относят митохондрии и пластиды. Они имеют сложную структуру, а от цитоплазмы их отделяют целых две мембраны.
  2. Немембранные. Сюда относятся фибриллярные структуры и рибосомы. К первым относят микрофиламенты, микрофибриллы и микротрубочки.

Помимо органоидов, в состав цитоплазмы входят включения.

Функции цитоплазмы

К функциям цитоплазмы относятся:

  • заполнение области клетки;
  • связывание клеточных компонентов;
  • объединение компонентов клетки в единое целое;
  • определение положения органелл;
  • проводник для химических и физических процессов;
  • поддержание внутреннего давления в клетке, объема, упругости.

Как видите, значение цитоплазмы очень велико для всех клеток, как эукариотических, так и прокариотических.

клеточные включения;

  • вакуоли (у растений и грибов);
  • клеточный центр;
  • пластиды (у растений);
  • реснички и жгутики;
  • микрофиламенты;
  • микротрубочки.
  • Ядро, отделенное кариолеммой, с ядрышками и молекулами ДНК, также содержит цитоплазма клетки. В центре оно у животных, ближе к стенке - у растений.

    Таким образом, особенности строения цитоплазмы будут во многом зависеть от типа клетки, от самого организма, его принадлежности к царству живых существ. В целом же она занимает все свободное пространство внутри и выполняет ряд важных функций.

    Матрикс, или гиалоплазма

    Строение цитоплазмы клетки складывается в первую очередь из ее деления на части:

    • гиалоплазма - постоянная жидкая часть;
    • органоиды;
    • включения - переменные структуры.

    Матрикс, или гиалоплазма, - это главная внутренняя составляющая, которая может находиться в двух состояниях - золе и геле.

    Цитозоль - такая цитоплазма клетки, которая обладает более жидким агрегатным характером. Цитогель - то же самое, но в более густом, богатом крупными молекулами органических веществ, состоянии. Общий химический состав и физические свойства гиалоплазмы выражаются так:

    • бесцветное, вязкое коллоидное вещество, достаточно густое и слизистое;
    • имеет четкую дифференциацию по структурной организации, однако вследствие подвижности легко может ее изменять;
    • изнутри представлена цитоскелетом или микротрабекулярной решеткой, которая образуется за счет белковых нитей (микротрубочек и микрофиламентов);
    • на частях данной решетки и располагаются все структурные части клетки в целом, а за счет микротрубочек, аппарата Гольджи и ЭПС между ними через гиалоплазму происходит сообщение.

    Таким образом, гиалоплазма - важная часть, которая обеспечивает многие функции цитоплазмы в клетке.

    Состав цитоплазмы

    Если говорить о химической составе, то на долю воды в цитоплазме приходится около 70 %. Это усредненное значение, ведь у некоторых растений есть клетки, в которых до 90-95% воды. Сухое вещество представлено:

    • белками;
    • углеводами;
    • фосфолипидами;
    • холестерином и другими азотсодержащими органическими соединениями;
    • электролитами (минеральными солями);
    • включениями в виде капелек гликогена (у животных клеток) и другими веществами.

      Общая химическая реакция среды - щелочная либо слабощелочная. Если рассмотреть, как располагается цитоплазма клетки, то следует отметить такую особенность. Часть собрана у края, в районе плазмалеммы, и называется эктоплазмой. Другая же часть ориентирована ближе к кариолемме, носит имя эндоплазмы.

      Строение цитоплазмы клетки определяется специальными структурами - микротрубочками и микрофиламентами, поэтому их рассмотрим подробнее.

      Микротрубочки

      Полые небольшие удлиненные частички размером до нескольких микрометров. Диаметр - от 6 до 25 нм. Из-за слишком мизерных показателей полное и емкое изучение данных структур пока невозможно, однако предполагают, что стенки их состоят из белкового вещества тубулина. Это соединение имеет цепочечную спирально закрученную молекулу.

      Некоторые функции цитоплазмы в клетке исполняются именно благодаря наличию микротрубочек. Так, например, они участвуют в выстраивании клеточных стенок грибов и растений, некоторых бактерий. В клетках животных их намного меньше. Также именно эти структуры осуществляют движение органоидов в цитоплазме.

      Сами по себе микротрубочки нестабильны, способны быстро распадаться и формироваться вновь, время от времени обновляясь.

      Микрофиламенты

      Достаточно важные элементы цитоплазмы. Представляют собой длинные нити из актина (глобулярный белок), которые, переплетаясь друг с другом, формируют общую сеть - цитоскелет. Другое название - микротрабекулярная решетка. Это своего рода особенности строения цитоплазмы. Ведь именно благодаря такому цитоскелету удерживаются вместе все органоиды, они могут смело сообщаться между собой, через них проходят вещества и молекулы, осуществляется метаболизм.

      Однако известно, что цитоплазма - внутренняя среда клетки, которая часто способна менять свои физические данные: становиться более жидкой или вязкой, менять структуру (переход из золя в гель и обратно). В связи с этим микрофиламенты - динамичная, лабильная часть, способная быстро перестраиваться, видоизменяться, распадаться и формироваться вновь.

      Плазматические мембраны

      Важное значение для клетки имеет наличие хорошо развитых и нормально функционирующих многочисленных мембранных структур, что также составляет своего рода особенности строения цитоплазмы. Ведь именно через плазматические мембранные преграды происходит транспорт молекул, питательных веществ и продуктов метаболизма, газов для процессов дыхания и так далее. Именно поэтому большинство органоидов имеет эти структуры.

      Они, подобно сети, располагаются в цитоплазме и отграничивают внутреннее содержимое своих хозяев друг от друга, от окружающей среды. Защищают и предохраняют от нежелательных веществ и бактерий, представляющих угрозу.

      Строение большинства из них сходно - жидкостно-мозаичная модель, рассматривающая каждую плазмалемму как биослой из липидов, пронизанный разными белковыми молекулами.

      Так как функции цитоплазмы в клетке - это в первую очередь транспортное сообщение между всеми ее частями, то наличие мембран у большинства органоидов является одной из структурных частей гиалоплазмы. Комплексно, все вместе, они выполняют общие задачи по обеспечению жизнедеятельности клетки.

      Рибосомы

      Небольшие (до 20 нм) округлые структуры, состоящие из двух половинок - субъединиц. Эти половинки могут существовать как вместе, так и разъединяться на какое-то время. Основа состава: рРНК (рибосомальная рибонуклеиновая кислота) и белок. Основные места локализации рибосом в клетке:


      Функции данных структур заключаются в синтезе и сборке белковых макромолекул, которые расходуются на жизнедеятельность клетки.

      Эндоплазматическая сеть и аппарат Гольджи

      Многочисленная сеть канальцев, трубочек и пузырьков, образующая проводящую систему внутри клетки и расположенная по всему объему цитоплазмы, носит название эндоплазматической сети, или ретикулума. Ее функция соответствует строению - обеспечение взаимосвязи органоидов между собой и транспортировка питательных молекул к органеллам.

      Комплекс Гольджи, или аппарат, выполняет функцию накопления необходимых веществ (углеводов, жиров, белков) в системе специальных полостей. Они ограничены от цитоплазмы мембранами. Также именно данный органоид является местом синтеза жиров и углеводов.

      Пероксисомы и лизосомы

      Лизосомы - небольшие округлые структуры, напоминающие пузырьки, заполненные жидкостью. Они весьма многочисленны и распределены в цитоплазме, где свободно перемещаются внутри клетки. Главная задача их - растворение чужеродных частиц, то есть устранение "врагов" в виде отмерших участков клеточных структур, бактерий и других молекул.

      Жидкое содержимое насыщенно ферментами, поэтому лизосомы принимают участие в расщеплении макромолекул до их мономерных звеньев.

      Пероксисомы - небольшие овальные или круглые органеллы, имеющие одинарную мембрану. Заполнены жидким содержимым, включающим большое количество различных ферментов. Являются одними из основных потребителей кислорода. Свои функции выполняют в зависимости от типа клетки, в которой находятся. Возможен синтез миелина для оболочки нервных волокон, а также могут осуществлять окисление и обезвреживание токсичных веществ и разных молекул.

      Митохондрии

      Данные структуры совершенно не зря называют силовыми (энергетическими) станциями клетки. Ведь именно в них происходит образование главных энергоносителей - молекул аденозинтрифосфорной кислоты, или АТФ. По внешнему виду напоминают фасолину. Мембрана, ограничивающая митохондрию от цитоплазмы, двойная. Внутренняя структура сильно складчатая для увеличения поверхности синтеза АТФ. Складки имеют название кристы, содержат большое количество разных ферментов для катализирования процессов синтеза.

      Больше всего митохондрий имеют мышечные клетки в организмах животных и человека, так как именно они требуют повышенного содержания и расхода энергии.

      Явление циклоза

      Движение цитоплазмы в клетке имеет название циклоза. Оно складывается из нескольких типов:

      • колебательное;
      • ротационное, или круговое;
      • струйчатое.

      Любое движение необходимо для обеспечения ряда важных функций цитоплазмы: полноценного перемещения органоидов внутри гиалоплазмы, равномерного обмена питательными веществами, газами, энергией, выведения метаболитов.

      Циклоз происходит как в растительных, так и в животных клетках, без исключений. Если он прекращается, то организм погибает. Поэтому данный процесс - это еще и показатель жизнедеятельности существ.

      Таким образом, можно сделать вывод о том, что цитоплазма животной клетки, растительной, любой эукариотической - очень динамичная, живая структура.

      Отличие цитоплазмы животной и растительной клетки

      На самом деле отличий немного. Общий план строения, выполняемые функции полностью схожи. Однако некоторые расхождения все же есть. Так, например:


      В остальных отношениях обе структуры идентичны по составу и строению цитоплазмы. Может варьироваться количество тех или иных элементных звеньев, но наличие их обязательно. Поэтому значение цитоплазмы в клетке как растений, так и животных одинаково велико.

      Роль цитоплазмы в клетке

      Значение цитоплазмы в клетке велико, если не сказать, что оно определяющее. Ведь это основа, в которой располагаются все жизненно важные структуры, поэтому переоценить ее роль сложно. Можно сформулировать несколько основных пунктов, раскрывающих это значение.

      1. Именно она объединяет все составные части клетки в одну комплексную единую систему, осуществляющую процессы жизнедеятельности слаженно и совокупно.
      2. Благодаря входящей в состав воде, цитоплазма в клетке выполняет функции среды для многочисленных сложных биохимических взаимодействий и физиологических превращений веществ (гликолиз, питание, газообмен).
      3. Это основная "емкость" для существования всех органоидов клетки.
      4. За счет микрофиламентов и трубочек формирует цитоскелет, связывая органоиды и позволяя им передвигаться.
      5. Именно в цитоплазме сосредоточен ряд биологических катализаторов - ферментов, без которых не происходит ни одна биохимическая реакция.

      Подводя итог, нужно сказать следующее. Роль цитоплазмы в клетке практически ключевая, так как она - основа всех процессов, среда жизни и субстрат для реакций.

    © 2024 4septic.ru - Ливневая канализация, выгребная яма, трубы, сантехника