Каскадная система регулирования. Комплект управления каскадный регулятор E8.4401, KROMSCHRODER. Пример системы каскадного регулирования

Каскадная система регулирования. Комплект управления каскадный регулятор E8.4401, KROMSCHRODER. Пример системы каскадного регулирования

17.07.2023

Рис.1. Структура каскадного ПИД-регулятора температуры в рубашке реактора

Рис.2. Структура каскадного ПИД-регулятора температуры в обратном холодильнике реактора


1. Регуляторы

Общие моменты

– Подсистема регулирования состоит из четырех ПИД-регуляторов, образующих два каскада регулирования (Рис.1., Рис.2.);

– Управление ведущим и ведомым регуляторами (изменение режима работы и задания) разрешается всегда, независимо от того, в работе реактор или нет как с мнемосхемы "Состояние установки", так и из окон регуляторов;

Резервирование регуляторов

– Для повышения надежности в системе предусмотрено резервирование регуляторов. Основным считается программный регулятор, резервным – аппаратный (SIPART DR22).

– Изменение коэффициентов аппаратного регулятора (коэффициент передачи, постоянная времени интегрирования и постоянная времени дифференцирования) в соответствии с настройками программного регулятора производится по нажатию кнопки "Применить" в окне настроек программного регулятора;

Структура программного регулятора

Структура программного регулятора приведена на Рис.1., Рис.2.

Управление регулятором

– Управление всеми четырьмя регуляторами реактора осуществляется из окон регуляторов или с мнемосхемы "Состояние установки". Внешний вид окон приведен на Рис.1., Рис.2.

– По каждому из четырех регуляторов реактора существует индивидуальное окно, имеющее две формы: основную – "окно управления регулятором" и вспомогательную – "окно настроек регулятора". Переключение между этими формами производиться по нажатию кнопок или в верхней правой области окон.

– По нажатию кнопки "RAMP" (есть только на окне ведущего регулятора по холодильнику) открывается окно настройки и управления рэмпом (см. Рис.2.).

– Сам рэмп – это линейное изменение задания по температуре от значения "Начальное значение" до значения "Конечное значение" за время "Время перехода";

– Окно настройки и управления рэмпом предназначено для наблюдения за ходом рэмпа, а также предоставляет оператору возможность управления рэмпом;

– В исходном состоянии при неактивном рэмпе кнопка "Стоп" нажата, кнопки "Старт" и "Пауза" отжаты, кнопка "Пауза" недоступна, поля "Конечное значение" и "Время перехода" доступны для ввода, в поле "Начальное значение" отображается текущее значение температуры, в полях "Прошедшее время" и "Оставшееся время" – нуль;

– При активном рэмпе кнопки "Стоп" и "Пауза" отжаты, кнопки "Старт" нажата, кнопка "Пауза" доступна, все поля недоступны для ввода.

В поле "Начальное значение" отображается значение температуры, с которого было начато плавное изменение задания регулятора после нажатия кнопки "Старт" или запуска рэмп системой.

В поле "Конечное значение" отображается значение задания регулятора, которое будет установлено после завершения рэмпа.

В поле "Время перехода" отображается общее время рэмпа, в поле "Прошедшее время" – прошедшее время рэмпа, в поле "Оставшееся время" – оставшееся время рэмпа;

– По истечении времени "Время перехода" задание регулятора равно значению "Конечное значение", поля ввода и кнопки принимают исходное состояние;

Проведение рэмпа оператором

– В системе существует возможность проведения рэмпа по команде оператора с настройками, заданными оператором;

– Перед запуском рэмпа оператор вводит требуемые значения в поля "Конечное значение" и "Время перехода";

– От начала фазы полимеризации до момента начала первой плановой дополнительной дозировки воды оператору в поле "Конечное значение" запрещено вводить значение большее, чем текущая температура в реакторе.

Если реактор в работе, до начала фазы полимеризации и от момента начала первой плановой дополнительной дозировки воды, поля ввода в окне настройки и управления рэмпом недоступны для ввода оператору, кнопки управления рэмпом недоступны для нажатия оператору.

Если реактор не в работе, поля ввода в окне настройки и управления рэмпом доступны для ввода оператору, кнопки управления рэмпом доступны для нажатия оператору;

– Для запуска рэмпа оператор нажимает кнопку "Старт", кнопка "Стоп" при этом отжимается";

– Во время рэмпа в поле вывода "Начальное значение" отображается значение температуры, с которого было начато плавное изменение задания регулятора после нажатия кнопки "Старт";

– Если во время проведения рэмпа требуется изменить его параметры (конечное значение или время перехода) необходимо нажать кнопку "Пауза". Кнопка "Старт" в этом случае остается нажатой, "Стоп" – отжатой, а поля ввода "Конечное значение" и "Время перехода" доступными для ввода. Изменение подпрограммой RAMP задания регулятора и отсчет прошедшего времени в поле "Прошедшее время" при этом будет временно приостановлено;

– После того, как новые параметры рэмпа введены в поля ввода, оператор отжимает кнопку "Пауза", автоматически пересчитывается значение в поле вывода "Оставшееся время" и возобновляется процесс плавного изменения задания с новыми параметрами и отсчет времени рэмпа в поле "Прошедшее время";

– Расчет нового значения в поле "Оставшееся время" производиться следующим образом: . Если рэмп до нажатия кнопки "Пауза" длился больше времени, чем ввели в поле "Время перехода" во время паузы, то оставшееся время принимается равным нулю, задание регулятора устанавливается равным значению в поле "Конечное значение";

– В двух случаях: по нажатию кнопки "Старт" и по отжатию кнопки "Пауза" производится установка задания ведущему регулятору в рубашке на один градус меньше чем "Конечное значение" рэмпа;

Функционирование регуляторов

– Все четыре регулятора реактора имеют два режима работы: ручной и автоматический. В ручном режиме обратная связь разомкнута, ПИД-алгоритм не функционирует, оператор и система имеют возможность изменять управляющее воздействие на клапан. В автоматическом режиме обратная связь замкнута, работает ПИД-алгоритм, оператор и система имеют возможность изменять задание по температуре;

– Четыре регулятора реактора объединены в две каскадные схемы регулирования, в каждой из которых есть ведущий и ведомый регулятор. Каскад считается замкнутым, если ведомый и ведущий регуляторы находятся в автоматическом режиме;

– Ведущий регулятор не может находиться в автоматическом режиме управления, если ведомый находится в ручном режиме. Если оператор или система переключает ведомый регулятор в ручной режим, ведущий также переключится в ручной режим, каскад размыкается. Если оператор или система переключает ведомый регулятор в автоматический режим, режим ведущего не изменяется (остается в ручном), каскад остается не замкнутым. Ведущий регулятор можно переключить в автоматический режим только если ведомый находиться в автоматическом режиме;

– При включении ведущего регулятора в автоматический режим обеспечивается безударность замыкания каскада путем предустановки управляющего воздействия ведущего регулятора равного заданию ведомого регулятора.

Обращаем Ваше внимание на то, что гарантия предприятия-изготовителя действует только в случае, если монтаж и ввод в эксплуатацию были произведены аттестованным заводом Protherm сотрудником специализированной организации. При этом наличие сертификата Protherm не исключает необходимости дополнительной аттестации персонала специализированной организации в соответствии с действующими на территории Российской Федерации законодательными и нормативными актами, касающимися сферы деятельности данной организации.

Выполнение гарантийных обязательств, предусмотренных действующим законодательством, в том регионе, где было установлено оборудование Protherm, осуществляет предприятие-продавец Вашего аппарата или связанная с ним договором организация, уполномоченная специальным договором выполнять гарантийный и негарантийный ремонт изделий Protherm. Ремонт может также выполнять организация, являющаяся авторизованным сервисным центром Protherm.

Выполняющая гарантийный либо негарантийный ремонт оборудования Protherm компания в течение гарантийного срока бесплатно устранит все выявленные ею недостатки, возникшие по вине завода-изготовителя. Конкретные условия гарантии и длительность гарантийного срока устанавливаются и документально фиксируются при продаже и вводе в эксплуатацию аппарата. Обратите внимание на необходимость заполнения раздела "Сведения о продаже", куда вносятся серийный номер аппарата, отметки о продаже и соответствующие печати, даты продажи и подписи продавца в гарантийных талонах, находящихся на обороте паспорта изделия.

Гарантия завода-изготовителя не распространяется на изделия, неисправности которых вызваны транспортными повреждениями, нарушением правил транспортировки и хранения, применением незамерзающих теплоносителей, загрязнениями любого рода, в том числе солями жёсткости, замерзанием воды, неквалифицированным монтажом и/или вводом в эксплуатацию, несоблюдением инструкций по монтажу и эксплуатации оборудования и принадлежностей к нему и прочими не зависящими от изготовителя причинами, а также на работы по монтажу и обслуживанию аппарата.

Установленный срок службы исчисляется с момента ввода в эксплуатацию и указан в прилагаемой к конкретному изделию документации.

Завод Protherm гарантирует возможность приобретения любых запасных частей к данному изделию в течение минимум 8 лет после снятия его с производства.

На оборудование Protherm и принадлежности к ниму завод-изготовитель устанавливает срок гарантии 2 года с момента ввода в эксплуатацию, но не более 2,5 лет с момента продажи конечному потребителю.
Гарантия на запасные части составляет 6 месяцев с момента розничной продажи при условии установки запасных частей аттестованным Protherm специалистом.

При частичном или полном отсутствии сведений о продаже и/или вводе в эксплуатацию, подтверждённых документально, гарантийный срок исчисляется с даты изготовления аппарата. Серийный номер изделия содержит сведения о дате выпуска: цифры 3 и 4 - год изготовления, цифры 5 и 6 - неделя года изготовления.

Организация, являющаяся авторизованным сервисным центром Protherm, имеет право отказать конечному потребителю в гарантийном ремонте оборудования, ввод в эксплуатацию которого был выполнен третьей стороной, если специалистом авторизованного сервисного центра будут обнаружены указанные выше причины, исключающие гарантию завода- изготовителя.

Применяется на сложных объектах, когда на выходной параметр j влияет несколько возмущений, измерить которые не представляется возможным. В этом случае выбирается какой-либо объект с промежуточным параметром j 1 , который измерить можно, и по нему строится регулирование объекта. Получаем первый контур регулирования. Этот регулятор не учитывает часть действующих на сложный объект возмущений, которые влияют на выходной параметр j. По параметру j строится второй контур регулирования. Регулятор второго контура управляет работой регулятора первого контура, изменяя ему задание таким образом, чтобы его работа скомпенсировала влияние возмущений на выходной параметр j. В этом состоит смысл каскадного регулирования (1-й и 2-й каскады регулирования).

Рис. 5.18. Схема САР уровня воды в барабане котла:

Н б – уровень воды в барабане котла; D пп – расход перегретого пара (l); W в – расход питательной воды (m об); ЗД – задатчик (задает значение уровня Н б,0); ВЭК – водяной экономайзер; ПП – пароперегреватель

Рассмотрим это на схеме регулирования сложного объекта, состоящего из последовательного соединения трех объектов с возмущениями (рис. 5.19).

Регулятор промежуточного параметра j 1 стремится поддерживать его постоянным и равным j 1,0 . Это 1-й каскад регулирования.

Этот регулятор учитывает только возмущение l 1 . Возмущения l 2 и l 3 будут влиять на выходной параметр j. Регулятор j (2-й каскад регулирования) будет поддерживать параметр j постоянным j 0 за счет того, что через задачик переменного задания (ЗПЗ ) будет изменять задание первому контуру на величину ±Dj 1 . Получив это добавление задания, регулятор j 1 будет так изменять параметр j 1 , чтобы скомпенсировать влияние возмущений l 2 и l 3 на выходной параметр j. Регулятор j (2-го каскада) как бы корректирует работу первого регулятора (по j 1), поэтому его называют корректирующим регулятором (КР) .

Рис. 5.19. Схема каскадного регулирования:

ЗД – задатчик; ЗПЗ – задатчик переменного задания; КР – корректирующий регулятор

Примером каскадного регулирования может служить распределение тепловой нагрузки между несколькими котлами, работающими на общую паровую магистраль (рис. 5.20).

Рис. 5.20. Регулирование тепловой нагрузки котлов, работающих на общую паровую магистраль: РСЗ – размножитель сигналов задания; ГКР – главный корректирующий регулятор

В паровую магистраль два котла подают пар с расходами D к1 и D к2 . Из паровой магистрали пар поступает к турбинам Т 1 ; Т 2 и Т 3 с расходами D Т1 ; D Т2 и D Т3 . Если существует баланс поступающих расходов пара от котлов и уходящих из магистрали к турбинам, то давление пара в магистрали р м не будет изменяться (р м,0).


Если турбины начинают потреблять больше или меньше пара, то баланс притока пара в магистраль и его расхода из магистрали нарушается, и давление р м необходимо регулировать. Промежуточными объектами в этой системе являются котлы К 1 и К 2 , а промежуточными параметрами – тепловые нагрузки котлов D q 1 и D q 2 . По ним строится регулятор тепловой нагрузки (РТН ), который управляет подачей топлива (газа). Это первый каскад регулирования.

Регуляторы поддерживают постоянными тепловые нагрузки D q 1,0 и D q 2,0 , а тем самым и расходы пара D к1 и D к2 . Если давление в магистрали р м начинает изменяться (параметр j), вступает в работу регулятор давления р м (это 2-й каскад), который в зависимости от величины отклонения давления ±Dр м =(р м - р м,0) вырабатывает на выходе сигнал, и через размножитель сигналов задания (РСЗ ) управляет работой регуляторов тепловой нагрузки котлов (РТН ), изменяя им задание на величину ±DD q . В соответствии с этим сигналом регуляторы РТН изменяют подачу топлива на котлы и тем самым выработку расходов пара D к1 и D к2 таким образом, чтобы восстановить давление в магистрали р м.

В том случае, если и эти способы регулирования не дают желаемых результатов, идут на ограничение возмущений l.

Каскадные системы применяют для автоматизации объектов, обладающих большой инерционностью по каналу регулирования, если можно выбрать менее инерционную по отношению к наиболее опасным возмущениям промежуточную координату и использовать для нее то же регулирующее воздействие, что и для основного выхода объекта.

В этом случае в систему регулирования (рис. 19) включают два регулятора – основной(внешний) регулятор R , служащий для стабилизации основного выхода объекта у, и вспомогательный(внутренний) регулятор R 1 , предназначенный для регулирования вспомогательной координаты у 1 .Заданием для вспомогательного регулятора служит выходной сигнал основного регулятора.

Выбор законов регулирования определяется назначением регуляторов:

Для поддержания основной выходной координаты на заданном значении без статической ошибки закон регулирования основного регулятора должен включать интегральную составляющую;

От вспомогательного регулятора требуется быстродействие, поэтому он может иметь любой закон регулирования.

Сравнение одноконтурных и каскадных АСР показывает, что вследствие более высокого быстродействия внутреннего контура в каскадной АСР повышается качество переходного процесса, особенно при компенсации возмущений, поступающих по каналу регулирования. Если по условию ведения процесса на вспомогательную переменную накладывается ограничение (например, температура не должна превышать предельно допустимого значения или соотношение расходов должно лежать в определенных пределах), то на выходной сигнал основного регулятора, который является заданием для вспомогательного регулятора, также накладывается ограничение. Для этого между регуляторами устанавливается устройство с характеристиками усилительного звена с насыщением.

Рис. 19. Структурная схема каскадной АСР:

W , W 1 – каналы основной у и вспомогательной у 1 регулируемых величин объекта; R , R 1 –основной и вспомогательный регуляторы; х Р, х Р1 – регулирующие воздействия регуляторов R и R 1 ; ε, ε 1 – величины рассогласований между текущим и заданным значениями регулируемых величин у и у 1 ; у 0 – задание основному регулятору R

Примеры каскадных АСР теплотехнологических объектов . На рис. 20 приведен пример каскадной системы стабилизации температуры жидкости на выходе из теплообменника, в которой вспомогательным контуром является АСР расхода греющего пара. При возмущении по давлению пара регулятор 1 изменяет сте­пень открытия регулирующего клапана таким образом, чтобы поддержать заданный расход. При нарушении теплового баланса в аппарате (вызванном, например, изменением входной температуры или расхода жидкости, энтальпии пара, потерь тепла в окружающую среду), приводящем к отклонению выходной температуры от заданного значения, регулятор температуры 2 корректирует задание регулятору расхода пара 1.



В теплотехнологических процессах часто основная и вспомогательная координаты имеют одинаковую физическую природу и характеризуют значения одного и того же технологического параметра в разных точках системы (рис. 21).

Рис.20. Каскадная система регулирования температуры (поз. 2) с коррекцией задания регулятору расхода пара (поз. 1)

Рис. 21. Структурная схема каскадной АСР с измерением вспомогательной координаты в промежуточной точке

На рис. 22 показаны фрагмент технологической схемы, включающий подогреватель реакционной смеси 2 и реактор 1, и система стабилизации температуры в реакторе.

Регулирующее воздействие по расходу пара подается на вход теплооб­менника. Канал регулирования, включающий два аппарата и трубопроводы, является сложной динамической системой с большой инерционностью. На объект действует ряд возмущений, поступающих в разные точки системы: давление и энтальпия пара, температура и расход реакционной смеси, потери тепла в реакторе и т. п. Для повышения быстродействия системы регулирования применяют каскадную АСР, в которой основной регулируемой переменной является температура в реакторе, а в качестве вспомогательной выбрана температура смеси между теплообменником и реактором.


Рис. 22. Каскадная система регулирования температуры (поз. 4) в реакторе (поз. 1) с коррекцией задания регулятору температуры (поз. 3) на выходе теплообменника (поз. 2)

Расчет каскадных АСР. Расчет каскадной АСР предполагает определение настроек основного и вспомогательного регуляторов при заданных динамических характеристиках объекта по основному и вспомогательному каналам. Поскольку настройки основного и вспомогательного регуляторов взаимозависимы, расчет их проводят методом итераций.



На каждом шаге итерации рассчитывают приведенную одноконтурную АСР, в которой один из регуляторов условно относится к эквивалентному объекту. Как видно из структурных схем на рис. 23, эквивалентный объект для основного регулятора (рис. 23, а) представляет собой последовательное соединение замкнутого вспомогательного контура и основного канала регулирования; передаточная функция его равна


(93)

Рис. 23. Структурные схемы эквивалентной одноконтурной системы регули­рования с основным (а) и вспомогательным (б) регулятором: вверху – эквивалентная одноконтурная схема; внизу – преобразование каскадной АСР к одноконтурной

Эквивалентный объект для вспомогательного регулятора 2(рис. 23)является параллельным соединением вспомогательного канала и основной разомкнутой системы. Его передаточная функция имеет вид:

(p)=W 1 (p) – W(p)R(p). (94)

Расчет начинают с основного регулятора. Метод используют в тех случаях, когда инерционность вспомогательного канала намного меньше, чем основного. На первом шаге принимают допущение о том, что рабочая частота основного контура (ω р) намного меньше, чем вспомогательного (ω р1) и при ω=ω р

. (95)

. (96)

Таким образом, в первом приближении настройки S 0 основно­го регулятора 1не зависят от R 1 (p) и находятся по W э °(p).

На втором шаге рассчитывают настройки вспомогательного регулятора для эквивалентного объекта (1) с передаточ­ной функцией W 1 э (p), в которую подставляют R(p,S°).


Комбинированные АСР

Комбинированные АСР применяются при автоматизации объектов, подверженных действию существенных контролируемых возмущении. Комбинированными системы называются потому, что при их построении используются два принципа регулирования: «по отклонению» (принцип Ползунова) и «по возмущению» (принцип Понселе). Системы, построенные по принципу Ползунова, имеют отрицательную обратную связь и работают по замкнутому циклу. Системы по возмущению (Понселе) обратной связи не имеют и работают по разомкнутому циклу.

Существуют два способа построения комбинированных АСР со структурными схемами, приведенными на рис. 24 и 25. Как видно из этих структурных схем, обе системы обладают общими особенностями: наличием двух каналов воздействия на выходную координату объекта и использованием двух кон­туров регулирования - замкнутого (через регулятор 1) и разо­мкнутого (через компенсатор 2). Отличие состоит лишь в том, что во втором случае корректирующий импульс от компенсатора поступает не на вход объекта, а на вход регулятора.

Рис. 24. Структурные схемы комбинированной АСР при подключении выхода компенсатора на вход объекта: а – исходная схема; б – преобразованная схема; 1– регулятор; 2 – компенсатор


Рис. 25. Структурные схемы комбинированной АСР при подключении выхода компенсатора на вход регулятора: а – исходная схема; б – преобразованная схема; 1 – регулятор; 2 – компенсатор

Введение корректирующего импульса по наиболее сильному возмущению позволяет существенно снизить динамическую ошибку регулирования при условии правильного выбора и расчета динамического устройства, формирующего закон изменения этого воздействия.

Основой расчета подобных систем является принцип инвариантности: отклонение выходной координаты системы от заданного значения должно быть тождественно равным нулю при любых задающих или возмущающих воздействиях.

Для выполнения принципа инвариантности необходимы два условия: идеальная компенсация всех возмущающих воздействий и идеальное воспроизведение сигнала задания. Очевидно, что достижение абсолютной инвариантности в реальных системах регулирования практически невозможно. Обычно ограничиваются частичной инвариантностью по отношению к наиболее опасным возмущениям. Рассмотрим условие инвариантности разомкнутой и комбинированной систем регулирования по отношению к одному возмущающему воздействию.

Условие инвариантности разомкнутой и комбинированной АСР. Рассмотрим условие инвариантности разомкнутой системы (рис. 26): y(t)= 0.

Рис. 26. Структурная схема разомкнутой АСР

Переходя к изображениям по Лапласу Х В (р) и Y(p) сигна­лов x В (t) и y(t), перепишем это условие с учетом передаточных функций объекта по каналам возмущения W B (p) и регулирования W Р (p) и компенсатора R K (p):

Y(р) = Х В (р) 0. (97)

При наличии возмущения[ ] условие инвариантности (97) выполняется, если

W B (p) + R k (p)W P (р)=0, (98)

R k () = -W В ()/W Р (). (99)

Таким образом, для обеспечения инвариантности системы регулирования по отношению к какому-либо возмущению необходимо установить динамический компенсатор, передаточная функция которого равна отношению передаточных функций объекта по каналам возмущения и регулирования, взятому с обратным знаком.

Выведем условия инвариантности для комбинированных АСР. Для случая, когда сигнал от компенсатора подается на вход объекта (см. рис. 24, a), структурная схема комбинированной АСР преобразуется к последовательному соединению разомкнутой системы и замкнутого контура (см. рис. 24, б), передаточные функции которых соответственно равны:


.

При этом условие инвариантности (97) записывается в виде:

Если X B (p) 0 и W ЗС (р) , должно выполняться условие:

т.е. условие инвариантности.

При использовании комбинированной системы регулирования (см. рис.25, а) вывод условий инвариантности приводит к соотношениям (см. рис.25, б):


(101)

Если X B (p) 0 и W ЗС (р) , то должно выполняться условие:

R к (р) = -W В (р) /. (103)

Таким образом, при подключении выхода компенсатора на вход регулятора передаточная функция компенсатора, полученная из условия инвариантности, будет зависеть от характеристик не только объекта, но и регулятора.

Условия физической реализуемости инвариантных АСР. Одной из основных проблем, возникающих при построении инвариантных систем регулирования, является их физическая реализуемость, т.е. реализуемость компенсатора, отвечающего условиям (99) или (103).

В отличие от обычных промышленных регуляторов, структура которых задана и требуется лишь рассчитать их настройки, структура динамического компенсатора полностью определяется соотношением динамических характеристик объекта по каналам возмущения и регулирования и может оказаться очень сложной, а при неблагоприятном соотношении этих характеристик - физически нереализуемой.

«Идеальные» компенсаторы физически нереализуемы в двух случаях:

Если время чистого запаздывания по каналу регулирования больше, чем по каналу возмущения. В этом случае идеальный компенсатор должен содержать звено упреждения, так как если:


(104)

, (105)

то с учетом (99):


(106)

Если в передаточной функции компенсатора степень полинома в числителе больше, чем степень полинома в знаменателе. В этом случае компенсатор должен содержать идеальные дифференцирующие звенья. Такой результат получается при определенном соотношении порядков дифференциальных уравнений, описывающих каналы возмущения и регулирования. Пусть

W В (р) = В в (Р)/ и Wp(p)= В р (Р)/, (107)

где В в (Р), А В (р), В Р (р), А Р (р) - полиномы степеней т В, n B , m Р и n р соот­ветственно.

m K = m B + n p ; n к = n в + m р.

Таким образом, условие, физической реализуемости инвариантной АСР заключается в том, чтобы выполнялись соотношения:

τ в ≥ τ р и m B + n p ≤ n в + m р. (108)

Пример. Рассмотрим систему регулирования температуры в химическом, реакторе с перемешивающим устройством, в котором протекает экзотерми­ческая реакция (рис. 27).

Рис. 27. Принципиальная схема химического реактора с перемешивающим устройством:1 – измеритель температуры; 2 – регулирующий клапан; 3 – измеритель расхода

Пусть основной канал возмущения - «расход реакционной смеси - температура в реакторе» - аппроксимируется двумя апериодическими звеньями первого порядка, а канал регулирования - «расход хладоагента - температура в реакторе» - тремя апериодическими звеньями первого порядка:

, (109)

, (110)

где T 1 , T 2 , Т 3 – наибольшие постоянные времени основных тепловых емкостей реактора, термометра и охлаждающей рубашки.

Для построения инвариантной системы регулирования согласовано выражению (99) необходимо ввести компенсатор с передаточной функцией:

, (111)

который физически нереализуем, так как в данном случае нарушается условие и компенсатор должен содержать идеальное дифференцирующее звено.

Задание

В соответствии с примером произвести разработку системы регулирования для ректификационной установки. Расчитать , , .

Исходные данные.

1. Схема ректификационной установки (рис. 28). Установка состоит из колонны ректификации К , теплообменника подогрева исходной смеси T-1, кипятильника Т-2, конденсатора Т-3 и флегмовой емкости Е .

В колонне осуществляется разделение бинарной смеси. Температуры кипения разделяемых компонентов существенно различаются, вследствие чего колонна имеет небольшое число тарелок и небольшую высоту. Запаздывания и инерционность по каналам передачи возмущающих и управляющих воздействий относительно невелики. Имеют место сильные внутренние перекрестные связи между основными контролируемыми (регулируемыми) величинами процесса - составами (температурами) дистиллята и кубового продукта.

В паровом потоке, выходящем с верха ректификационной колонны, содержатся неконденсируемые в условиях работы теплообменника Т-3 компоненты в инертные газы. Они отводятся из емкости орошения на сдувку (в топливную сеть).

Режим работа установки подвержен большим и частым возмущениям: по расходу F и составу X F сырья; по давлению (расходу) греющего агента, подаваемого в теплообменник T-I и кипятильник Т-2; по давлению (расходу) хладагента, подаваемого в конденсатор Т-3.

«Ключевые» управления процессом ректификации – это регулирующие органы на линии подачи флегмы в колонну К и линии подачи греющего агента в кипятильник Т-2.

Рис. 28. Схема ректификационной установки

2. Заданы динамические параметры объекта: (постоянные времени Т ; запаздывания τ; коэффициент передачи К об) по каналам:

а. «изменение положения регулирующего органа P01 – расход сырья F » ( Х Р 1 F) ;

б. «изменение положения регулирующего органа P02 – расход греющего агенте F 1 » ( Х Р 2 F 1 );

б * . «изменение положения регулирующего органа Р02 - температура сырья θ F после T-1» ( Х Р 2 θ F);

в. «изменение положения регулирующего органа Р03 - состав дистиллята Х D » ( Х Р 3 Х D);

г. «изменение положения регулирующего органа Р04 - давление Р в колонне» ( Х Р 4 P);

д. «изменение положения регулирующего органа Р05 - уровень в кубе колонны» ( X Р 5 L) ;

е. «изменение положения регулирующего органа Р02* - температура сырья θ F после T-1» ( X Р 2* θ F) ;

ж. «изменение положения регулирующего органа Р04* - давление P в колонне» ( X Р 4* Р);

з. «изменение положения регулирующего органа Р06 - температура в кубе колонны» ( X Р 6 θ К);

з * . «изменение положения регулирующего органа РО6 - температура θ B вверху колонны» ( X Р 6 θ B);

и. «изменение положения регулирующего органа РОЗ - температура θ B вверху колонны» ( X Р3 θ B);

и * . «изменение положения регулирующего органа РОЗ - температураθ К низа колонны» ( X Р 3 θ К) .

3. Заданы величины действующих на объект возмущений, выраженные в % хода регулирующего органа:

а) канал X Р 1 F (по расходу сырья F );

б) каналы X Р 2 F 1 , X Р2 θ F (по давления греющего агента P 1 и его теплосодержанию q 1);

в) канал X Р 3 X D (по составу сырья X F );

г) канал X Р4 P (по давлению Р 2 хладагента, подаваемого в конденсатор Т-3);

д) канал X Р 5 L (по теплосодержанию q 2 греющего агента, подаваемого в кипятильник Т-2).

4. Заданы требования к качеству процесса регулирования (динамическая ошибка Х max , время регулирования t P , степень затухания переходных процессов ψ, статическая ошибка регулирования Х cm).

Исходные данные по п. 2 задания (п.п. а - д), п. 3 и п. 4 приведены в табл. 9, a по пунктам 2 (е, ж, з, и) - в табл. 10 исходных данных.


Таблица 9. Динамические параметры объекта и требования к качеству процесса регулирования

Динамические параметры размерность Варианты
ΔХ Р1 → ΔF ΔХ Р2 → Δθ F ΔХ Р2 → ΔG n ΔХ Р3 → ΔX D ΔХ Р4 → ΔP ΔХ Р5 → ΔL Т с мин с мин мин мин 8,0 6,2 6,0 4,8 3,6 3,6 8,4 6,5 7,0 5,0 4,0 4,0 9,0 6,6 6,5 4,6 3,8 2,8 5,9 8,5 4,5 3,0 4,5 9,4 5,8 12,0 4,9 4,2 4,2 9,6 6,8 10,0 8,0 4,5 3,0 10,4 6,3 7,1 4,7 3,0 3,7 8,2 6,1 6,4 4,4 3,5 4,8 9,8 5,9 7,2 5,1 4,3 5,0 12,0 5,5 8,0 5,0 2,7 3,4 10,5 5,4 8,4 4,7 3,1 4,6 11,6 5,3 8,8 5,2 4,4 4,4
ΔХ Р1 → ΔF ΔХ Р2 → Δθ F ΔХ Р2 → ΔG n ΔХ Р3 → ΔX D ΔХ Р4 → ΔP ΔХ Р5 → ΔL К ОБ ед.изм.рег.вел. % хода р. о. 3,9 0,40 0,80 0,01 0,01 16,0 4,0 0,48 0,60 0,012 0,10 32,0 3,8 0,44 0,70 0,011 0,07 20,0 3,9 0,40 0,80 0,01 0,08 30,0 4,2 0,43 0,85 0,012 0,07 30,0 4,1 0,50 0,82 0,01 0,10 50,0 4,3 0,58 0,80 0,012 0,08 27,0 3,9 0,42 0,78 0,014 0,047 23,4 4,4 0,50 0,81 0,01 0,05 29,2 4,1 0,47 0,78 0,011 0,05 18,0 3,7 0,60 0,83 0,014 0,08 24,0 4,05 0,48 0,80 0,012 0,075 35,0
ΔХ Р1 → ΔF ΔХ Р2 → Δθ F ΔХ Р2 → ΔG n ΔХ Р3 → ΔX D ΔХ Р4 → ΔP ΔХ Р5 → ΔL τ с мин с мин мин мин 2,0 4,6 1,5 2,9 1,9 1,8 2,1 4,8 2,0 3,0 1,8 2,2 2,3 4,9 1,8 2,8 1,5 1,3 2,5 4,3 2,3 2,7 1,8 2,4 2,4 4,2 3,0 2,9 1,9 2,6 2,5 5,0 2,5 3,1 2,0 1,2 2,6 4,7 2,0 2,8 2,7 1,6 2,1 4,5 1,9 2,6 2,1 2,5 2,5 4,4 2,1 3,0 2,0 2,7 3,2 4,1 2,2 3,1 1,9 2,0 2,6 4,0 2,1 2,8 2,5 2,8 3,0 3,9 2,2 3,0 2,0 2,3
ΔХ Р1 → ΔF ΔХ Р2 → Δθ F ΔХ Р2 → ΔG n ΔХ Р3 → ΔX D ΔХ Р4 → ΔP ΔХ Р5 → ΔL х В % хода р. о.
ΔХ Р1 → ΔF ΔХ Р2 → Δθ F ΔХ Р2 → ΔG n ΔХ Р3 → ΔX D ΔХ Р4 → ΔP ΔХ Р5 → ΔL Х max м 3 /ч 0 С м 3 /ч м.доли кгс/см 2 мм 5,0 8,0 0,05 0,8 6,0 6,0 0,06 0,7 5,5 7,0 0,055 0,6 6,0 7,8 0,05 0,75 5,6 8,2 0,06 0,5 5,2 7,9 0,05 0,9 6,1 8,3 0,06 1,0 5,4 8,0 0,07 0,85 5,3 8,1 0,05 0,50 5,7 8,4 0,055 0,80 6,2 7,9 0,07 0,94 6,0 7,6 0,06 0,65
ΔХ Р1 → ΔF ΔХ Р2 → Δθ F ΔХ Р2 → ΔG n ΔХ Р3 → ΔX D ΔХ Р4 → ΔP ΔХ Р5 → ΔL t P с мин с мин мин мин
ΔХ Р1 → ΔF ΔХ Р2 → Δθ F ΔХ Р2 → ΔG n ΔХ Р3 → ΔX D ΔХ Р4 → ΔP ΔХ Р5 → ΔL Ψ 0,75
ΔХ Р1 → ΔF ΔХ Р2 → Δθ F ΔХ Р2 → ΔG n ΔХ Р3 → ΔX D ΔХ Р4 → ΔP ΔХ Р5 → ΔL х с m м 3 /ч 0 С м 3 /ч м.доли кгс/см 2 мм 3,8 2,6 3,0 2,9 3,2 3,4 3,1 2,9 4,2 2,8 4,0 3,6

Таблица 10. Динамические параметры объекта и требования к качеству процесса регулирования

Объект (канал регулирования) Динамические параметры Размерность Варианты
ΔХ * Р2 → Δθ F ΔХ * Р4 → ΔP Т мин мин 3,4 1,6 2,8 1,4 2,6 1,9 3,2 1,8 2,4 1,3 2,7 1,5 3,1 1,2 3,3 1,8 2,2 2,0 2,8 1,0 2,9 1,6 2,0 2,1
ΔХ * Р2 → Δθ F ΔХ * Р4 → ΔP ΔХ Р6 → Δθ К ΔХ Р6 → Δθ В ΔХ Р3 → Δθ В ΔХ Р3 → Δθ F ед.изм.рег.вел. % хода р. о. 0,58 0,15 0,60 0,10 0,64 0,075 0,80 0,08 0,86 0,09 0,75 0,15 0,82 0,14 0,76 0,10 0,94 0,08 0,76 0,10 0,90 0,16 0,80 0,10
К 11 К 12 К 22 К 21 0,70 0,50 0,80 0,40 0,80 0,60 0,90 0,50 0,80 0,40 0,70 0,50 0,80 0,60 0,90 0,70 0,90 0,80 0,70 0,60 0,80 0,50 0,80 0,60 0,90 0,80 0,90 0,70 0,90 0,80 0,80 0,70 0,90 0,40 0,80 0,75 0,70 0,50 0,60 0,40 0,85 0,55 0,70 0,50 0,85 0,70 0,90 0,65
ΔХ * Р2 → Δθ F ΔХ * Р4 → ΔP τ мин мин 1,5 0,38 1,4 0,33 1,2 0,44 1,7 0,40 1,4 0,30 1,3 0,35 1,5 0,27 1,6 0,41 1,0 0,46 1,3 0,25 1,5 0,40 1,0 0,50

Контрольные вопросы

1. Каскадные АСР в схемах управления технологическими процессами. Принципы их построения и функционирования. Примеры каскадных АСР в промышленности и энергетике.

2. Комбинированные АСР в схемах управления технологическими процессами. Принципы построения и функционирования. Условия физической реализуемости. Примеры комбинированных АСР в промышленности и энергетике.


ПРАКТИКУМ № 8 (2 часа)

© 2024 4septic.ru - Ливневая канализация, выгребная яма, трубы, сантехника