Моноблочный тепловой насос воздух вода схема. Тепловая установка «воздух-вода». Описание, принцип действия насоса, отзывы. Требуется ли кондиционирование воздуха в летний период

Моноблочный тепловой насос воздух вода схема. Тепловая установка «воздух-вода». Описание, принцип действия насоса, отзывы. Требуется ли кондиционирование воздуха в летний период

18.10.2020

Этой осенью наблюдается обострение в сети по поводу тепловых насосов и их применения для отопления загородных домов и дач. В загородном доме, который я построил своими руками, с 2013 года установлен такой тепловой насос. Это полупромышленный кондиционер, способный эффективно работать на обогрев при уличной температуре до -25 градусов по Цельсию. Он является основным и единственным отопительным прибором в одноэтажном загородном доме общей площадью 72 квадратных метра.


2. Коротко напомню предысторию. Четыре года назад был куплен участок 6 соток в садовом товариществе, на котором, я, своими руками, без привлечения наемной рабочей силы, построил современный энергоэффективный загородный дом. Предназначение дома - вторая квартира, расположенная на природе. Круглогодичная, но не постоянная эксплуатация. Требовалась максимальная автономность в совокупности с простой инженерией. В районе расположения СНТ отсутствует магистральный газ и на него рассчитывать не стоит. Остается привозное твердое или жидкое топливо, но все эти системы требуют сложной инфраструктуры, стоимость возведения и содержания которой сопоставимо с прямым отоплением электричеством. Таким образом выбор уже был частично предопределен - электрическое отопление. Но здесь возникает второй, не менее важный момент: ограничение электрических мощностей в садовом товариществе, а также достаточно высокие тарифы на электроэнергию (на тот момент - не «сельский» тариф). По факту на участок выделено 5 квт электрической мощности. Единственный выход в данной ситуации - использовать тепловой насос, который позволит сэкономить на отоплении примерно в 2,5-3 раза, по сравнению с прямой конвертацией электрической энергии в тепловую.

Итак, переходим к тепловым насосам. Они различаются по тому, откуда они забирают тепло и по тому, куда его отдают. Важный момент, известный из законов термодинамики (8 класс средней школы) - тепловой насос не производит тепло, он его переносит. Именно поэтому его КОП (коэффициент преобразования энергии) всегда больше 1 (то есть тепловой насос всегда отдает тепла больше, чем потребляет из сети).

Классификация тепловых насосов следующая: «вода - вода», «вода - воздух», «воздух - воздух», «воздух - вода». Под «водой» указываемой в формуле слева подразумевается отбор тепла от жидкого циркулирующего теплоносителя проходящего по трубам находящимся в земле или водоеме. Эффективность таких систем практически не зависит от времени года и температуры окружающего воздуха, но они требуют дорогостоящих и трудоемких земляных работ, а также наличие достаточных свободных площадей под укладку грунтового теплообменника (на котором, впоследствии будет плохо что-либо расти летом, ввиду вымораживания грунта). Под «водой» указываемой в формуле справа подразумевается отоплительный контур, находящийся внутри здания. Это может быть как система радиаторов, так и жидкостные теплые полы. Такая система также потребует сложных инженерных работ внутри здания, но при этом имеет и свои плюсы - с помощью такого теплового насоса можно заодно получить горячую воду в доме.

Но самым интересной выглядит категория тепловых насосов класса «воздух - воздух». По сути это самые обычные кондиционеры. Во время работы на обогрев они забирают тепло из уличного воздуха и переносят его на воздушный теплобменник находящийся внутри дома. Несмотря на некоторые недостатки (серийные модели не могут работать при температурах окружающего воздуха ниже -30 градусов по Цельсию), они имеют колоссальное преимущество: такой тепловой насос очень легко установить и его стоимость сопоставима с обычным электрическим отоплением с помощью конвекторов или электрокотла.

3. На основании этих рассуждений был выбран канальный полупромышленный кондиционер Mitsubishi Heavy, модель FDUM71VNX. По состоянию на осень 2013 года, комплект состоящий из двух блоков (внешний и внутренний) стоил 120 тысяч рублей.

4. Внешний блок установлен на фасаде с северной стороны дома, там где меньше всего ветра (это важно).

5. Внутренний блок установлен в холле под потолком, от него с помощью гибких шумоизолированных воздуховодов обеспечена подача горячего воздуха во все жилые помещения внутри дома.

6. Т.к. подача воздуха находится под потолком (организовать подачу горячего воздуха около пола в каменном доме решительно невозможно), то очевидно, что забирать воздух нужно на полу. Для этого с помощью специального короба забор воздуха был опущен на пол в коридоре (во всех межкомнатных дверях также установлены переточные решетки в нижней части). Рабочий режим - 900 кубометров воздуха в час, за счет постоянной и стабильной циркуляции совершенно нет разницы по температуре воздуха между полом и потолком в любой части дома. Если быть точным, то разница составляет 1 градус по Цельсию, это даже меньше, чем при использовании настенных конвекторов под окнами (с ними перепад температуры между полом и потолком может достигать 5 градусов).

7. Кроме того, что внутренний блок кондиционера за счет мощной крыльчатки способен прогонять в режиме рециркуляции большие объемы воздуха по дому, не нужно забывать о том, что для людей наобходим свежий воздух в доме. Поэтому система отопления также выполняет роль системы вентиляции. По отдельному воздушному каналу с улицы в дом подается свежий воздух, который при необходимости подогревается (в холодное время года) с помощью автоматики и канального ТЭНа.

8. Раздача горячего воздуха осуществляется через вот такие решетки, расположенные в жилых комнатах. Также стоит обратить внимание на то, что в доме нет ни одной лампы накаливания и используются исключительно светодиоды (запомните этот момент, это важно).

9. Отработанный «грязный» воздух удаляется из дома через вытяжку в санузле и на кухне. Горячая вода готовится в обычном накопительном водонагревателе. Вообще, это достаточно большая статья расходов, т.к. колодезная вода очень холодна (от +4 до +10 градусов по Цельсию в зависимости от времени года) и кто-то может резонно заметить, что можно использовать солнечные коллекторы для нагрева воды. Да, можно, но стоимость вложений в инфраструктуру такова, что за эти деньги можно греть воду напрямую электричеством в течение 10 лет.

10. А это - «ЦУП». Главный и основной пульт управления воздушным тепловым насосом. У него есть различные таймеры и простейшая автоматика, но мы используем только два режима: вентиляция (в теплое время года) и нагрев (в холодное время года). Построенный дом оказался настолько энергоэффективным, что кондиционер в нём ни разу не использовался по прямому назначению - для охлаждения дома в жару. В этом большую роль сыграло и светодиодное освещение (теплоотдача от которого стремится к нулю) и очень качественное утепление (шутка ли, после обустройства газона на крыше нам даже пришлось этим летом использовать тепловой насос для обогрева дома - в дни, когда среднесуточная температура опускалась ниже +17 градусов по Цельсию). В доме круглогодично поддерживается температура не ниже +16 градусов по Цельсию, независимо от наличия в нём людей (когда в доме люди, то температура устанавливается +22 градуса по Цельсию) и никогда не выключается приточная вентиляция (потому, что лень).

11. Счетчик технического учета электроэнергии был установлен осенью 2013 года. То есть ровно 3 года назад. Нетрудно подсчитать, что среднегодовое потребление электрической энергии составляет 7000 квтч (на самом деле сейчас эта цифра немного меньше, т.к. в первый год расход был большим из-за использования осушителей во время отделочных работ).

12. В заводской комплектации кондиционер способен работать на обогрев при температуре окружающего воздуха не ниже -20 градусов по Цельсию. Для работы при более низких температурах требуется доработка (на самом деле она актуальна при эксплуатации даже при температуре -10, если на улице высокая влажность) - установка греющего кабеля в дренажный поддон. Это необходимо для того, чтобы после цикла разморозки внешнего блока вода в жидком состоянии успела покинуть дренажный поддон. Если она не успеет это сделать, то в поддоне будет намерзать лед, который впоследствии выдавит раму с вентилятором, что, вероятно, приведет к обламыванию лопастей на нём (можете посмотреть фотографии обломанных лопастей в интернете, я сам с этим чуть не столкнулся т.к. положил греющий кабель не сразу).

13. Как я уже упоминал выше - в доме везде используется исключительно светодиодное освещение. Это важно, когда речь заходит о кондиционировании помещения. Возьмем стандартную комнату, в которой расположено 2 светильника, по 4 лампы в каждом. Если это лампы накаливания мощностью 50 ватт, то суммарно они потребляют 400 ватт, в то время как светодиодные лампы будут потреблять менее 40 ватт. А вся энергия, как мы знаем из курса физики, в конечном итоге все равно превращается в тепловую. То есть освещение на лампах накаливания это такой неплохой обогреватель средней мощности.

14. Теперь поговорим о том, как работает тепловой насос. Всё, что он делает - переносит тепловую энергию из одного места в другое. Именно по такому принципу работают и холодильники. Они переносят тепло из холодильной камеры в помещение.

Есть такая хорошая загадка: Как изменится температура в комнате, если в ней оставить включенный в розетку холодильник с открытой дверцей? Правильный ответ - температура в комнате будет расти. Для просты понимания это объяснить можно так: комната это замкнутый контур, в него по проводам поступает электричество. Как мы знаем энергия в конечном итоге превращается в тепловую. Именно поэтому температура в комнате и будет расти, ведь в замкнутый контур извне поступает электричество и в нём же остается.

Немного теории. Теплота это форма энергии, которая передается между двумя системами из-за разницы температур. При этом тепловая энергия переходит из места с высокой температурой к месту с более низкой температурой. Это естественный процесс. Перенос тепла может осуществляться за счет теплопроводности, теплового излучения или путём конвекции.

Существует три классических агрегатных состояния вещества, преобразование между которыми осуществляется в результате изменения температуры или давления: твердое, жидкое, газообразное.

Для изменения агрегатного состояния тело должно либо получить, либо отдать тепловую энергию.

При плавлении (переход из твердого состояния в жидкое) поглощается тепловая энергия.
При испарении (переход из жидкого состояния в газообразное) поглощается тепловая энергия.
При конденсации (переход из газообразного состояния в жидкое) выделяется тепловая энергия.
При кристаллизации (переход из жидкого состояния в твердое) выделяется тепловая энергия.

Тепловой насос использует в работе два переходных режима: испарение и конденсацию, то есть оперирует веществом, находящимся либо в жидком, либо в газообразном состоянии.

15. В качестве рабочего тела в контуре теплового насоса используется хладагент R410a. Это фторуглеводород, закипающий (переход из жидкого состояния в газообразное) при очень низкой температуре. А именно, при температуре - 48,5 градусов по Цельсию. То есть, если обычная вода при нормальном атмосферном давлении кипит при температуре +100 градусов по Цельсию, то фреон R410a кипит при температуре почти на 150 градусов ниже. Более того, при сильно отрицательной температуре.

Именно это свойство хладагента используется в тепловом насосе. Путем целеправленного измерения давления и температуры ему можно придать необходимые свойства. Либо это будет испарение при температуре окружающей с поглощением тепла, либо конденсации при температуре окружающей среды с выделением тепла.

16. Вот как выглядит контур циркуляции теплового насоса. Его основные компоненты: компрессор, испаритель, расширительный клапан и конденсатор. Хладагент циркулирует в замкнутом контуре теплового насоса и попеременно меняет свое агрегатное состояние с жидкого на газообразное и обратно. Именно хладагент передает и переносит тепло. Давление в контуре всегда избыточно по сравнению с атмосферным.

Как это работает?
Компрессор всасывает холодный газообразный хладагент низкого давления поступающий из испарителя. Компрессор сжимает его под высоким давлением. Температура повышается (тепло от работы компрессора также добавляется к хладагенту). На этом этапе мы получается газообразный хладагент высокого давления и высокой температуры.
В таком виде он поступает в конденсатор, обдуваемый более холодным воздухом. Перегретый хладагент отдает свое тепло воздуху и конденсируется. На этом этапе хладагент находится в жидком состоянии, под высоким давлением и со средней температурой.
Далее хладагент поступает в расширительный клапан. В нём происходит резкое снижение давления, вследствие расширения объема, который занимает хладагент. Уменьшение давления приводит к частичному испарению хладагента, что в свою очередь снижает температуру хладагента ниже температуры окружающей среды.
В испарителе давление хладагента продолжает снижаться, он еще сильнее испаряется, а необходимое для этого процесса тепло отбирается от более теплого наружного воздуха, который при этом охлаждается.
Полностью газообразный хладагент снова поступает в компрессор и цикл замыкается.

17. Попробую еще раз объяснить попроще. Хладагент кипит уже при температуре -48,5 градусов по Цельсию. То есть, условно говоря при любой более высокой температуре окружающей среды он будет иметь избыточное давление и в процессе испарения забирать тепло из окружающей среды (то есть уличного воздуха). Есть хладагенты используемые в низкотемпературных холодильниках, у них температура кипения еще ниже, вплоть до -100 градусов по Цельсию, но его не получится использовать для работы теплового насоса на охлаждение помещения в жару из-за очень высокого давления при высоких температурах окружающей среды. Хладагент R410a это некий баланс между возможностью работы кондиционера как на нагрев, так и охлаждение.

Вот, кстати, хороший документальный фильм снятый в СССР и рассказывающий о том, как устроен тепловой насос. Рекомендую.

18. Любой ли кондиционер можно использовать для работы на обогрев? Нет, не любой. Хотя на фреоне R410a и работают почти все современные кондиционеры, не менее важны и другие характеристики. Во-первых кондиционер должен иметь четырехходовой клапан, позволяющий так сказать переключиться на «реверс», а именно поменять местами конденсатор и испаритель. Во-вторых, обратите внимание, что компрессор (он расположен справа снизу) находится в теплоизолированном кохуже и имеет электрический подогрев картера. Это нужно для того, чтобы всегда поддерживать положительную температуру масла в компрессоре. По факту, при температуре окружающей среды ниже +5 градусов по Цельсию даже в выключенном состоянии кондиционер потребляет 70 ватт электрической энергии. Второй, важнейший момент - кондиционер должен быть инверторным. То есть и компрессор и электромотор крыльчатки должны иметь возможность изменять производительность в процессе работы. Именно это позволяет тепловому насосу эффективно работать на обогрев при наружной температуре ниже -5 градусов по Цельсию.

19. Как мы знаем, на теплообменнике внешнего блока, который является испарителем во время работы на обогрев, происходит интенсивное испарение хладагента с поглощением тепла из окружающей среды. Но в уличном воздухе находятся пары воды в газообразном состоянии, которые конденсируются, а то и кристаллизуются на испарителе из-за резкого снижения температуры (уличный воздух отдает свою теплоту хладагенту). А интенсивное обмерзание теплообменника приведет к снижению эффективности теплоосъема. То есть, по мере снижения температуры окружающей среды необходимо «притормозить» и компрессор и крыльчатку, чтобы обеспечить наиболее эффективный теплосъем на поверхности испарителя.

Идеальный тепловой насос работающий только на обогрев должен иметь площадь поверхности внешнего теплообменника (испарителя) в несколько раз превышающую площадь поверхности внутреннего теплообменника (конденсатора). На практике мы возращаемся к тому самому балансу, что тепловой насос должен уметь работать как на обогрев, так и охлаждение.

20. Слева можно видеть практически полностью покрытый инеем внешний теплообменник, кроме двух секций. В верхней, не замерзшей, секции фреон имеет еще достаточно высокое давление, что не позволяет ему эффективно испаряться с поглощением тепла из окружающей среды, в нижней же секции он уже перегрет и не может больше забирать тепло извне. А фотография справа дает ответ на вопрос почему внешний блок кондиционера был установлен на фасаде, а не спрятан от глаз на плоской кровле. Именно из-за воды, которую нужно отводить от дренажного поддона в холодное время года. Отводить эту воду с кровли было бы значительно сложнее, чем с отмостки.

Как я уже писал, во время работы на обогрев при отрицательной температуре на улице испаритель на внешнем блоке обмерзает, на нём кристаллизуется вода из уличного воздуха. Эффективность обмерзшего испарителя заметно снижается, но электроника кондиционера в автоматическом режиме контролирует эффективность теплосъема и периодически переключает тепловой насос в режим разморозки. По сути режим разморозки это прямой режим кондиционирования. То есть из помещения забирается тепло и переносится на внешний, обмерзший теплообменник, что растопить на нём лед. В это время вентилятор внутреннего блока работает на минимальной скорости, а из воздуховодов внутри дома поступает прохладный воздух. Цикл разморозки обычно длится 5 минут и происходит каждые 45-50 минут. Ввиду высокой тепловой инерционности дома, никакого дискомфорта во время разморозки не ощущается.

21. Вот таблица теплопроизводительности данной модели теплового насоса. Напомню, что номинальное потребление энергии составляет чуть более 2 кВт (ток 10А), а теплоотдача колеблется от 4 кВт при -20 градусах на улице, до 8 кВт при уличной температуре +7 градусов. То есть коэффициент конвертации составляет от 2 до 4. Именно во сколько раз тепловой насос позволяет экономить энергию по сравнению с прямым преобразованием электрической энергии в тепловую.

Кстати, есть еще один интересный момент. Ресурс у кондиционера при работе на обогрев в разы выше, чем при работе на охлаждение.

22. Осенью прошлого года я установил счетчик электрической энергии Smappee, который позволяет вести статистику энергопотребления по месячно и предоставляет более менее удобную визуализацию проведенных измерений.

23. Smappee был установлен ровно год назад, в последних числах сентября 2015 года. Он также пытается показать стоимость электрической энергии, но делает это исходя из заданных вручную тарифов. А с ними есть важный момент - как известно, у нас повышают цены на электроэнергию 2 раза в год. То есть за представленный период измерений тарифы менялись 3 раза. Поэтому не будем обращать внимание на стоимость, а подсчитаем количество потребленной энергии.

На самом деле с визуализацией графиков потребления у Smappee есть проблемы. Например, самый короткий столбец слева это потребление за сентябрь 2015 года (117 квтч), т.к. у разработчиков что-то пошло не так и на экране за год почему-то 11, а не 12 столбцов. Но суммарные цифры потребления подсчитаны безошибочно.

А именно, 1957 квтч за 4 месяца (включая сентябрь) в конце 2015 года и 4623 квтч за весь 2016 год с января по сентябрь включительно. То есть суммарно было израсходовано 6580 квтч на ВСЁ жизнеообеспечение загородного дома, который круглогодично отапливался, независимо от нахождения в нём людей. Напомню, что летом этого года впервые пришлось использовать тепловой насос для обогрева, а на охлаждение летом он не работал ни разу за все 3 года эксплуатации (кроме автоматических циклов разморозки, разумеется). В рублях, по текущим тарифам в Московской области это менее 20 тысяч рублей в год или около 1700 рублей в месяц. Напомню, что в эту сумму входит: отопление, вентиляция, нагрев воды, плита, холодильник, освещение, электроника и техника. То есть это фактически в 2 раза дешевле, чем ежемесячная плата за квартиру в Москве аналогичной площади (разумеется без учета взносов на содержание, а также сборов на капитальный ремонт).

24. А теперь давайте подсчитаем сколько же денег позволил сэкономить тепловой насос в моём случае. Сравнивать будем электрическим отоплением, на примере электрокотла и радиаторов. Считать буду по докризисным ценам, которые были на момент установки теплового насоса осенью 2013 года. Сейчас тепловые насосы подорожали из-за обвала курса рубля, а техника вся импортная (лидеры по производству тепловых насосов - японцы).

Электрическое отопление:
Электрический котел - 50 тыс рублей
Трубы, радиаторы, фитинги и т.д. - еще 30 тыс. рублей. Итого материалов на 80 тысяч рублей.

Тепловой насос:
Канальный кондиционер MHI FDUM71VNXVF (внешний и внутренний блок) - 120 тыс. рублей.
Воздуховоды, адаптеры, теплоизоляция и т.д. - еще 30 тыс. рублей. Итого материалов на 150 тысяч рублей.

Установка своими руками, но в обоих случаях по времени это примерно одинаково. Итого «переплата» за тепловой насос по сравнению с электрокотлом: 70 тысяч рублей.

Но это не всё. Воздушное отопление с помощью теплового насоса это заодно кондиционер в теплое время года (то есть кондиционер все равно нужно ставить, так ведь? значит добавим еще минимум 40 тысяч рублей) и вентиляция (обязательна в современных герметичных домах, еще минимум 20 тысяч рублей).

Что имеем? «Переплата» в комплексе составляет всего 10 тысяч рублей. Это еще только на стадии ввода системы отопления в эксплуатацию.

А дальше начинается эксплутация. Как я уже писал выше, в самые холодные зимние месяцы коэффициент преобразования составляет 2,5, а в межсезонье и летом можно принять его равным 3,5-4. Возьмем усредненный годовой СОР равный 3. Напомню, что за год в доме расходуется 6500 квтч электрической энергии. Это суммарное потребление на все электрические приборы. Возьмем для простоты расчетов по минимуму, что тепловой насос потребляет из этой суммы всего лишь половину. То есть 3000 квтч. При этом в среднем за год он отдал 9000 квтч тепловой энергии (6000 квтч «притащил» с улицы).

Переведем перенесенную энергию в рубли, предположив, что 1 квтч электрической энергии стоит 4,5 рубля (усредненный дневной/ночной тариф в Московской области). Получаем 27000 рублей экономии, по сравнению с электрическим отоплением только за первый год эксплуатации. Вспомним, что разница на стадии ввода системы в эксплуатацию составляла всего 10 тысяч рублей. То есть уже за первый год эксплуатации тепловой насос СЭКОНОМИЛ мне 17 тысяч рублей. То есть он окупился в первый же год эксплуатации. При этом напомню, что это не постоянное проживание, при котором экономия была бы еще больше!

Но не забываем про кондиционер, который конкретно в моем случае не потребовался ввиду того, что построенный мною дом оказался переутепленным (хотя и используется однослойная стена из газобетона без дополнительного утепления) и он просто не нагревается летом на солнце. То есть скинем 40 тысяч рублей из сметы. Что имеем? ЭКОНОМИТЬ на тепловом насосе в таком случае я стал не с первого года эксплуатации, а со второго. Не велика разница-то.

Но если мы возьмем тепловой насос класса «вода-вода» или даже «воздух-вода», то цифры в смете будут совершенно иными. Именно поэтому тепловой насос «воздух-воздух» это лучшее соотношение цена/эффективность на рынке.

25. И напоследок несколько слов про электрические отопительные приборы. Меня замучали вопросами о всяких инфракрасных обогревателях и нано-технологиях не сжигающих кислород. Отвечу коротко и по делу. Любой электрический обогреватель имеет КПД 100%, то есть вся электрическая энергия переходит в тепловую. На самом деле это касается любых электрических приборов, даже электрическая лампочка дает тепло ровно в том количестве, в котором она его получила из розетки. Если же говорить про инфракрасные обогреватели, то их преимущество заключается в том, что они греют предметы, а не воздух. Поэтому самое разумное применение для них - обогрев на открытых верандах в кафе и на автобусных остановках. Там, где есть необходимость передать тепло напрямую предметам/людям, минуя нагрев воздуха. Аналогичная история про сжигание кислорода. Если где-то в рекламном проспекте вы видите эту фразу, знайте - производитель держит покупателя за лоха. Горение это реакция окисления, а кислород это окислитель, то есть он сам себя сжечь не может. То есть это все бред дилетантов, прогулявших уроки физики в школе.

26. Еще одним вариантом экономии энергии при электрическом отоплении (не важно, прямой конвертацией или с помощью теплового насоса) является использование теплоемкости ограждающих конструкций (или же специального теплоаккумулятора) для накопления тепла при использовании дешевого ночного электрического тарифа. Именно с этим я и буду экспериментировать этой зимой. По моим предварительным расчетам (с учетом того, что в ближайший месяц я буду платить по сельскому тарифу на электроэнергию, т.к. строение уже зарегистрировано как жилой дом), даже несмотря на рост тарифов на электроэнергию, в следующем году я заплачу за содержание дома менее 20 тысяч рублей (за всю потребленную электрическую энергию на отопление, нагрев воды, вентиляцию и технику с учетом того, что в доме круглогодично поддерживается температура примерно 18-20 градусов тепла, независимо от того есть ли в нём люди).

Что в итоге? Тепловой насос в виде низкотемпературного кондиционера класса «воздух-воздух» это самый простой и доступный способ экономии на отоплении, что вдвойне может быть актуально при существовании лимита электрических мощностей. Я полностью доволен установленной отопительной системой и не испытываю какого-либо дискомфорта от её эксплуатации. В условиях Московской области использование воздушного теплового насоса полностью себя оправдывает и позволяет окупить инвестиции не позднее, чем через 2-3 года.

Кстати, не забывайте что у меня еще есть Instagram, в котором я публикую ход работ практически в реальном времени -

На сегодняшний день тепловой насос типа вода-воздух является очень полезным и удобным средством отопления вашего жилища. Он без проблем с помощью наружного воздуха, пусть даже и холодного, может нагреть помещение.

Существует несколько типов такого оборудования, которые в большинстве случаев предназначены для использования в частных домах. Но мы также рассмотрим насос, который очень легко и возможно установить в офисных и жилых помещениях, где нет достаточно большого пространства для размещения оборудования.

Тепловой насос воздух-вода

Для того чтобы уметь использовать энергию, которая везде нас окружает, придумали такой агрегат, как тепловой насос. Они работают по системе, которую называют обратным принципом Карно. Также по такому принципу осуществляется работа кондиционеров и холодильных установок.

Принцип работы насоса следующий: воздух снаружи поступает внутрь через вентилятор, который размещен на улице. Дальше он проходит в следующую часть – испаритель. Там находится вещество, которое необходимо для нагревания воздуха. Обычно используют газ фреон.

Он также распространен в холодильном оборудовании. Это вещество – хладагент, находится внутри змеевидной медной трубы на дне испарителя. В процессе нагревания хладагент испаряется и поступает в следующую часть установки – в конденсатор. Там же вещество переходит из газообразного состояния в жидкое, в процессе чего выделяется много тепла, которое и способствует нагреванию помещения.

Такой процесс происходит постоянно по кругу и за счет циркуляции фреона происходит постоянная переработка воздуха вашем жилище.

Отопление тепловым насосом воздух-вода

Вентилятор могут размещать либо на стене дома, или же на территории, прилегающей к дому. Но при этом стоит учитывать, что должна быть отличная циркуляция воздуха в любом случае.

Использовать такой насос не рекомендуется в том случае, если у вас в доме расположены обычные радиаторы. Лучше всего совмещаются с воздушной системой или с системой «теплый пол». При этом, он поможет вам сэкономить, поскольку вы будете меньше тратить на отопление традиционной системой.

Тепловые насосы воздух вода отзывы и преимущества

Агрегат имеет много плюсов, среди них можно отметить следующие:

  • нагревание воздуха в помещении происходит в любое время и при любой температуре, пусть даже она будет отрицательной. При этом не нужно тратить дополнительные средства на топливо, поскольку воздух является доступным и бесплатным средством.
  • Насос такого типа легко устанавливается. Вы можете сделать такую систему своими руками без проблем. При этом не нужно тратить много сил бурение, бетонирование или проделывание траншей.
  • существенная экономия на самом оборудовании. Сделать насос можно, потратив на это гораздо меньше средств, чем, если вы купите в магазине другой аналогичный вид такой системы.
  • Легкость и бесшумность работы установки.
  • Возможность автоматического управления системой.

Насос типа «воздух-вода» очень удобен тем, что тут вам не потребуется устанавливать трубы, по которым смог бы перемещаться воздух. Вам необходимо всего лишь установить вентилятор, предварительно закрыв решеткой его лопасти.

Но при выборе такого оборудования нужно учесть и некоторые недостатки: лучше всего использовать такую систему в тех местах, где не очень суровая зима, потому что при минусовой температуре (ниже 6-7 градусов) может произойти сбой в работе насоса. Также обязательно нужна электроэнергия, чтобы обеспечить работу такого насоса. Но даже по сравнению с тратами на электричество, вы сэкономите гораздо больше, чем будете использовать газ или другие виды электрических нагревателей.

Тепловой насос воздух вода своими руками

Теперь давайте посмотрим, как можно собрать насос самостоятельно.

Компрессор обычно сделать самому достаточно сложно, поэтому нужно взять готовый. Если приобрести его в магазине является для вас слишком затратным, то можно использовать компрессор, который стоит на сплит-системе. Этот насос обладает отличными характеристикам, наилучшим образом подходят для нашей установки. Также нам понадобятся два больших бака: один пластиковый, а второй металлический. И ещё потребуется сделать из медной трубы две змеевидных конструкции. По них будет перемещаться хладагент.

Сделать спиралью их можно, накрутив на цилиндрический предмет. Один змеевик вы разместите в конденсатор (стальной бак), а второй – в испаритель – соответственно, в пластиковую бочку. Ну и дополнительно нужны будут дополнительные детали: кран для слива, переходники и кронштейны, хладагент и электроды.

При этом учтите также, что при подключении устройства нужен большой ток.

После установки змеевиков нужно стальной бак заварить и соединить составляющие в общую систему. Для того, чтобы запустить фреон в медную трубу и заодно проверить работоспособность конструкции, нужно воспользоваться услугами мастера по холодильному оборудованию.

Перед тем, как запустить насос в работу, стоит определить, какой мощности он вам нужен. Чтобы исключить дополнительные траты, не стоит делать насос мощнее, чем вам нужно.

Для этого можно воспользоваться услугами специалистов, которые владеют специальными программами по расчету мощности или же посчитать ее самому – на специальных сайтах.

Также преждевременно нужно позаботиться об утеплении вашего жилья, ведь от этого будет зависеть температура воздуха зимой в доме. И также будет зависеть экономия на средствах отопления.

Тепловой насос воздух вода трансформирует энергию внешней среды в тепло, обогревающее внутреннее пространство. То есть, с помощью этого устройства жилище или строение можно «отапливать» обычным воздухом. Причем воздух не сгорает в топке, а просто отдает свои калории сложному агрегату – тепловому насосу, который транспортирует эту энергию в помещение и отдает ее системе отопления.

Согласитесь, подобные манипуляции с энергиями похожи на магию. Но ничего фантастического в тепловых насосах подобного типа нет. И в данной статье мы рассмотрим принципы работы и устройство такого агрегата.

Схема работы воздушного теплового насоса скопирована с холодильника или кондиционера, а именно:

  • Низкокалорийный энергоноситель (воздух), кипятит хладагент, залитый в циклический контур, который соединяет испаритель (улавливатель тепла) с конденсатором (тепловым излучателем).
  • В конденсаторе пары хладагента переходят в иное агрегатное состояние (жидкость) и отдают энергию отопительной системе.
  • После этого жидкий хладагент вновь уходит к испарителю, где превращается в пар. И все начинается сначала.

То есть, в работе используется все тот же обратный принцип Карно, но главной частью установки является не испаритель, аккумулирующий тепло из окружающего пространства, а конденсатор, отдающий накопленные калории потребителю.


При этом цикличность работы установки обеспечивает особый компрессор, который не только прокачивает хладагент по контуру, но и сжимает его, увеличивая тем самым теплоотдачу на конденсаторе. Впрочем, это не единственный силовой агрегат установки – тепловой насос оборудован достаточно мощным вентилятором, который обдувает испаритель.

Ну а в качестве потребителя тепла выступает либо конвектор, разогревающий воздух внутри комнаты, либо система «теплый пол» или иные радиаторы с большой площадью.

А вот со стандартными батареями тепловые вентиляторы работают не очень эффективно.

Причем конвектор с конденсатором монтируют в помещении, а испаритель с вентилятором – либо снаружи, на фасаде, либо во внутренней части вытяжной ветви вентиляционной системы.

Достоинства и недостатки воздушных тепловых насосов

Отзывы о тепловом насосе воздух вода бывают как хорошими, так и плохими. Ведь это устройство при всех неоспоримых достоинствах не лишено и некоторых недостатков.

Причем к достоинствам относятся следующие факты:

  • Во-первых, такой агрегат легко смонтировать. Ведь для первичного контура, замкнутого на испаритель, не нужны ни земляные работы, ни водоемы.
  • Во-вторых, воздух ест везде, а вот земля, в личной собственности, только за городом, ну а с искусственными или естественными водоемами проблем еще больше. Поэтому воздушные тепловые насосы для отопления можно монтировать даже в городских условиях, не спрашивая разрешение контролирующих инстанций.
  • В-третьих, воздушный насос можно объединить с системой вентиляции, используя мощности агрегата для повышения эффективности воздухообмена в помещении.

Кроме того, такой насос работает почти бесшумно и легко программируется.

Ну а неизбежные недостатки можно представить в виде такого списка:

  • Эффективность агрегата зависит от температуры окружающего воздуха. Поэтому КПД устройства летом выше, чем в зимнее время.
  • Воздушный насос можно включать лишь при относительно слабых морозах. Причем при -7 градусов Цельсия бытовой воздушный насос работать уже не будет. Хотя промышленные агрегаты включаются и при -25 градусах Цельсия.

Кроме того, воздушный насос – это не совсем автономная энергетическая установка. Агрегат потребляет электроэнергию, трансформируя 1 КВт/час в 11-14 МДж.

Воздушный тепловой насос своими руками: схема сборки

В отличие от достаточно сложных геотермальных и гидротермальных систем тепловой насос типа «воздух-вода» доступен для изготовления даже своими силами.

Причем для изготовления воздушной системы нам понадобится сравнительно дешевый набор, состоящий из следующих деталей и узлов:

  • Компрессора сплит-системы – его можно приобрести в сервисном центре или в ремонтной мастерской
  • 100-литрового бака из нержавейки – его можно снять с любой старой стиральной машины
  • Полимерной емкости с широкой горловиной – подойдет обычный бидон или полипропилена.
  • Медных труб, с пропускным диаметром более 1 миллиметра. Их придется купить, но это единственная дорогостоящая покупка во всем проекте.
  • Набора запорно-регулирующей арматуры, в который войдут сливной кран, клапан для травления воздуха, предохранительный клапан.
  • Крепежных элементов – кронштейнов, клипс для труб, хомутов и прочего.

Кроме того, нам понадобится самый дешевый хладагент – фреон и хотя бы простейший блок управления, без которого использование тепловых насосов будет весьма затруднительно, ввиду необходимости синхронизировать работу компрессора с температурой на поверхности испарителя и конденсатора.

Сборка агрегата

Ну а сам процесс сборки выглядит следующим образом:

  • Из медной трубы изготавливаем змеевик, габариты которого должны соответствовать поперечному сечению и высоте стального бака.
  • Монтируем змеевик в бак, оставляя выпуски медной трубы за его пределами. Далее герметизируем бак и оборудуем впускным (снизу) и выпускным (сверху) штуцером. В итоге, получается первый элемент системы – конденсатор – с готовыми отводами под прямую трубу отопления (верхний штуцер) и обратку (нижний штуцер)
  • Монтируем на стене (с помощью кронштейна) компрессор. Соединяем напорный штуцер компрессора с верхним выпуском медной трубы.
  • Из медной трубы изготавливаем второй змеевик, габариты которого совпадают с поперечным сечением и высотой полимерного бидона.
  • Монтируем змеевик в бидон, установив на его торце вентилятор, нагнетающий воздух на змеевик. Причем из бидона должны выходить два выпуска. В итоге, вся эта конструкция, представляющая собой испаритель системы, монтируется на фасаде или в вентиляционной шахте.
  • Соединяем нижний выпуск бака (конденсатора) с нижним выпуском бидона (испарителя), врезав в этот трубопровод управляющий дроссель.
  • Соединяем верхний выпуск бидона с всасывающим патрубком компрессора.

Вот, в принципе, и все. Использующая принцип работы воздушного теплового насоса система уже практически готова. Остается только залить хладагент в компрессор и соединить вентиль дросселя с управляющим блоком.

Воздушное отопление тепловым насосом: расчет мощности установки

Мощность теплового насоса зависит от множества факторов, а именно: от объема хладагента, от площади поверхности змеевиков в испарителе и конденсаторе, от предполагаемого объема теплоотдачи системе отопления и так далее. Поэтому, в большинстве случаев, расчет мощности ведется в специальных программах, которые учитывают и другие вводные данные.

В упрощенной форме эти программы оформляются в виде он-лайн «калькуляторов», с открытыми полями для ввода следующих параметров:

  • Площади помещения и высоты потолков – они используются для расчета объема.
  • Региона, где расположено здание – с помощью этого параметра определяется среднегодовая температура воздуха, влияющая на производительность испарителя.
  • Степени утепления задания – с помощью этого параметра определяется ожидаемая «калорийность» системы отопления.

На финальной стадии два последних параметра преобразуются в коэффициенты, на которые умножают объем помещения. Полученную в результате подобных манипуляций цифру сравнивают с табличными значениями, увязывающими мощность насоса с отапливаемым объемом.

В итоге получается, что на отопление дома площадью 100 квадратов, как правило, нужен 5-киловаттный тепловой насос, а жилище на 350 квадратных метров можно отопить 28-киловаттным насосом.

Воздушный тепловой насос: нюансы обслуживания агрегата

Тепловой насос воздух-вода не требует какого-то особого обслуживания, с частичной разборкой/сборкой.

Для поддержания работоспособности системы владельцу придется выполнять лишь следующие манипуляции:

  • Периодическую чистку вентилятора и решетки на испарителе от забившегося мусора (листьев, пыли и так ладе).
  • Периодическую смазку компрессора, выполняемую согласно предоставленной производителем схеме.
  • Замену масла в силовых агрегатах (компрессоре, вентиляторе).
  • Периодическую проверку целостности медного трубопровода с хладагентом и силового кабеля, питающего компрессор и вентилятор.

Вы начали строить дом или уже строили его. Но, что бы это ни было, маленькое или большое, так что всегда было очень приятно и тепло, без системы отопления вы просто не можете этого сделать.

Вы можете делать все сами, но можете доверять опытным специалистам.

В любом случае, оборудование, которое вы выбираете. Теплые комнаты — это просто старый метод с плитой или камином. Но это не об этом, но рассмотрим системы отопления, в которых расположен хладагент, нагревая комнаты с помощью отопительных радиаторов.

Стоимость частных систем отопления дома:

Система теплоснабжения дома до 100 м2.

  1. дизайн
  2. Двухстенные котлы
  3. Алюминиевые радиаторы
  4. Трубы и фитинги
  5. монтаж
  6. Запуск системы отопления

Цена 150 000 рублей

Система отопления частного дома площадью до 200 м2.

  1. дизайн
  2. Двухкомпонентный котел
  3. Алюминиевые радиаторы
  4. Трубы и фитинги
  5. монтаж
  6. Запуск системы отопления

Цена 280 000 рублей

Отопительная камера до 300 м2.

  1. дизайн
  2. Котлы напольные
  3. Непрямой котел
  4. Алюминиевые радиаторы
  5. Трубы и фитинги
  6. монтаж

Запуск отопительных систем
Цена 385 000 рублей

В зависимости от проекта отопления есть скидки на материалы и работы.

Установка отопления в частном доме специалистами «Теплопрока»!

Преимущества работы с нами:

  • Более 14 лет успешной деятельности.
  • Профессиональный коллектив дизайнеров и производителей произведений.
  • Более 30 предметов снимаются ежемесячно.
  • Компания уже выполнила более 20 000 проектов.
  • В процессе сборки участвуют 40 профессиональных команд.
  • Мы не используем дешевые рабочие и неквалифицированные силы.
  • Все детали проверены и приняты инженерами технического контроля.
  • Мы используем качественное оборудование.
  • Все компоненты и работа оправданы.
  • Из-за прямых продаж и скидок продавца мы предлагаем оборудование по ценам ниже рыночных.
  • После представления сметы для проекта цена не меняется и ничто не выплачивается во время установки.

Гидравлическая система отопления Это замкнутая система труб, котел (теплогенератор) и другие устройства, наполненные жидкостью.

Жидкость внутри системы называется хладагентом. Системы отопления работают довольно просто: через насос жидкость проходит через систему, сначала нагревается в котле, затем охлаждается в радиаторах, выделяет тепло и одновременно нагревает помещения. В системе отопления все еще много разных кранов, гаек, но они являются лишь основными компонентами системы.

Что такое хладагент? Это жидкость, заполненная системой отопления, через которую тепло передается от котла к радиаторам.

Почему он часто используется в качестве воды для охлаждения? Все потому, что вода по своим физическим свойствам может накапливаться и давать огромное количество тепла. Вода имеет хороший поток, поэтому нетрудно заполнить систему отопления и передать тепло от котла к радиаторам.

Вода является экологически чистой, и утечка не представляет опасности для здоровья. В воде всегда доступно в акведуке, его очень легко добавить в систему.

В Teploprok вы можете заказать отопительные приборы: тепловентиляторы, тепловые завесы, тепловые пушки и другое отопительное оборудование для поддержания желаемой температуры в помещении. Теплоизоляция стен, потолков, крыш предотвращает потерю тепла из-за инфракрасного теплового излучения.

Самый близкий элемент системы отопления, который мы видим каждый день, — это радиатор отопления.

Планирование и установка систем отопления начинается с их выбора и расположения. Что означает качество систем отопления? В дополнение к хорошо установленному оборудованию по качеству системы отопления также понимается способность всей системы поддержания температуры в доме. Нагрев радиаторов отопления осуществляется через трубы, соединяющие газовый нагреватель и радиаторы, с закрытой системой, через которую движется хладагент.

Самый быстрый из нас и в то же время очень важная часть системы отопления — это «сердечная» котельная. В котле энергия сгорания топлива переходит в тепло, выделяемое хладагентом.

Выберите способ нагрева гаража

Рано или поздно каждый владелец гаража думает о том, как организовать систему отопления в таком здании.

В зависимости от местоположения гаража в соответствии с жилой структурой и материалом, из которого хранится объект, существует несколько способов нагрева.

Отопление частного дома.

Зимой зимнее время тесно связано с увеличением потребления.

Людям нужно больше калорий и теплой одежды. Автомобили нуждаются в большем количестве топлива. А для дома вам нужно больше электричества и газа. И если для жилых жителей стоимость отопления является относительно небольшой ежемесячной полезностью для коммунальных предприятий, то для многих жителей частного сектора это серьезный финансовый удар.

Как подключить отопление?

Несомненно, вы согласны с тем, что нагрев котла намного удобнее, чем нагрев печи.

Тем не менее, план отопления будет таким же, независимо от того, что вы создали: котлом или духовкой. При выборе системы отопления лучше оставаться на двухсторонних двухтрубных системах, поскольку они более эффективны и надежны. С помощью этой системы вы можете добиться сильной естественной циркуляции воды или другого теплоносителя.

Общая информация о нагревании

Как известно, чем больше разность температур между температурой окружающего воздуха и внутренним воздухом и чем больше поверхность закрытых конструкций, тем больше тепла теряет здание.

Точно так же потери тепла здания зависят от материала, из которого строится здание, от толщины перегородок. Тепло из комнаты с кирпичными стенами будет исчезать быстрее, чем из комнаты с деревянными стенами или стенами из бетонной пены. Это зависит от теплопроводности материала: теплопроводность древесины ниже теплопроводности кирпича.

Системы отопления с естественной циркуляцией

Простейшая и наиболее распространенная система отопления для небольших домов в домах — это система отопления с естественной циркуляцией, которая использует только физические законы и не требует дополнительных источников энергии, кроме природных.

Страница 1 из 5

Постройка частного дома, коттеджа, да и вообще любого малоэтажного жилья заставляет задуматься о его отопительной системе. Актуальный способ – использование для отопления геотермального теплового насоса.

Существует несколько типов тепловых насосов, различающихся по способу производства тепла.

К популярным способам относят ТН с применением горизонтального контура с забором воды с поверхности водоема или с водяным контуром с использованием водяной скважины.

Создание отопления с помощью теплового насоса на водяном контуре часто становится очень актуальным и выгодным по сравнению с геотермальным контуром. Почему? Ответ самый простой. Достаточно пробурить водяную скважину на глубину от 10 до 100 метров, где найдется водоносный пласт, и пользоваться скважиной для работы ТН. Вода считается более эффективным теплоносителем, чем просто использование тепла грунта.

Для создания горизонтального контура требуется наличие участка большой площади.

Для геотермального контура может понадобиться пробурить достаточно большое количество скважин. Возможностей для их бурения может не оказаться. Элементарно, могут отсутствовать подъездные пути для доставки буровой установки. Для монтажа ТН с получением тепла от грунтовых вод или водоносного пласта требуется пробурить всего две скважины.

Одну для забора воды, другую для сброса отработанной воды. Это намного более легкое и менее затратное в экономическом плане действие.

Существует ряд возражений, касающихся бытовых тепловых насосов.

Попробуем развенчать их на примере использования тепловых насосов Ovanter.


Возражение 1

Скептики утверждают, что грунтовая вода, используемая для тепловых насосов, не относится к возобновляемым источникам энергии.

Грунтовая вода – идеальная подпитка энергией теплового насоса. Температура грунтовой воды круглый год составляет примерно от +4 до +7оС. Она соответствует большинству регионов в России и никогда не падает ниже этого значения.

Помимо водяной скважины источником энергии для земляного теплового насоса с водяным контуром может считаться: поверхностная вода или, если присутствуют, сточные или биологические воды, поступающие от очистных сооружений или сбрасываемые жидкости из промышленных стоков.

Основные виды воды, способной служить источником тепловой энергии для ТН с водяным циклом.

  • Подпочвенные воды – температура в разных географических районах от +4 до +10оС;
  • Морская вода – температура на глубине от 25 до 50 метров колеблется в пределах от +5 до +8оС;
  • Грунтовые воды – отличаются наиболее стабильной температурой;
  • Ближайший водоем (река, озеро, глубокий пруд).

    Контур укладывается на дно водоема или притапливается на глубину до 2 метров. К слову, 1 метр трубопровода, используемого для такого контура, соответствует 30 Вт тепловой мощности.

Чем выше температура грунта, тем более повышается тепловой коэффициент (СОР), тем меньше электроэнергии тратится на работу теплового насоса на производство теплоты.


Возражение 2

Для тепловых насосов с горизонтальным контуром необходимо учитывать фактор охлаждения грунта.

Как сделать тепловой насос воздух-вода для отопления дома

На самом деле интенсивное использование геотермального тепла грунта влечет остывание почвы вокруг регистра труб системы теплосбора. Например, в северных регионах за короткий летний период грунт не успевает набрать нужную температуру. Поэтому зачастую, на начало следующего зимнего периода грунт выходит с пониженным тепловым потенциалом.

Понижение температуры грунта носит экспоненциальный (возрастающий) характер. Поэтому примерно через 5 лет эксплуатации системы теплоснабжения, тепловое состояние грунта после понижения температуры улучшается и выходит на относительно устойчивый уровень.

Однако он будет все равно меньше естественного на 1 – 2оС. Выход из положения находится. При проектировании системы теплоснабжения важно учитывать возможное охлаждение грунта в процессе ее эксплуатации.

Существует еще такой выход. Тепловые насосы, потребляющие тепловую энергию из грунтовых вод и водоносных пластов или из открытых водоемов, создают более стабильную систему теплоснабжения с устойчивой температурой.

Пример, использование российских тепловых насосов Ovanter . Насосы этой фирмы работают в открытых системах грунтовых вод, где происходит постоянный водообмен. Пополнение грунтовых вод происходит за счет следующих источников, представляющих собой:

  1. Воду, просачивающуюся с поверхности почвы;
  2. Воду, которая поступает из более глубоких грунтовых слоев.

Таким образом, эффективность зависит от толщины и глубины нахождения водоносного слоя.

Температура водоносного слоя остается постоянной и не изменяется в течение всего периода. Практика строительства подобных систем свидетельствует, что максимальный температурный градиент в общей толще грунта в течение всего времени эксплуатации не превышает, как правило, 8-10 град/м.

Значит, перепады температур будут очень малы. Значение температурного градиента наблюдается по вертикали и именно в том направлении, в котором более всего наблюдается интенсивность потока жидкости. Она компенсирует миграцию влаги под воздействием термоградиентных сил. Таким образом, система сбора низкопотенциального тепла грунта под влиянием потоков влаги в грунтовых порах в общем массиве не нуждается в особой точности математических расчетов.


Возражение 3

Получение воды из скважины нуждается в бурении и некоторого, зачастую большого, количества трубопровода . Если вода низкого качества, это влечет появление солевых отложений и коррозии на стенках труб.

Современные технологии позволили найти решение по защите трубопровода от коррозии.

Эффективным способом борьбы с коррозией считается применение пластиковых труб. Это самый действенный вариант в создании отопительной системы с мощными тепловыми насосами, способными работать со скважинами глубиной до 70 и более метров. Для трубопровода используются дешевые пластиковые трубы.


Возражение 4

Проблема сброса воды после того, как вода прошла через теплообменник .

У кого-то может возникнуть вопрос: куда девать сброшенную воду?

Сбросная вода, например, промышленных объектов может также использоваться в качестве источника энергии для тепловых насосов.

Сбросная вода, используемая для ТН частного дома, согласно технологическим условиям обязательно должна уходить в соседнюю скважину, расположенную на расчетном расстоянии от основной скважины и обратно в пласт.

Рис. №1. Схема использования теплового насоса открытого типа с отбором теплоты грунтовых вод.

На схеме хорошо видно скважину для сброса воды.

Законодательные акты в виде Федеральных норм и правил обусловливают условия сброса воды и подводят под действия частных лиц юридическое обоснование. Кроме того, сброс воды при использовании в системе ТН не считается экологически вредным. Выброс вредных примесей в окружающую среду отсутствует.


Возражение 5

Зависимость работы ТН от дебета скважины и аккумуляция возобновляемых запасов воды в дополнительном баке .

Со временем количество воды в скважине может уменьшаться, а качество якобы ухудшается.

Однако даже со временем, доставая воду со скважины глубиной до 70 и более метров объемом 3 – 5 м3/час, количество воды не уменьшается. Свойства воды, благодаря протоке во многом улучшаются

Вода может аккумулироваться в дополнительном резервуаре (баке для хранения запаса воды). В этом случае вода может использоваться без применения теплообменника. Например, использование бака аккумулятора емкостью 300 литров дает возможность копить тепловую энергию и выравнивает скачкообразное использование воды.

Кроме того, ряд необходимых и дополнительных элементов в системе повышают ее качество, надежность и безотказность.

Тепловой насос совместно со скважинным насосом представляют собой мощную установку для подъема воды. При подъеме на поверхность вода разделяется. Часть воды используется для отопления. Другая часть воды, проходя через систему механической фильтрации, применяется для бытовых нужд. Если дом входит в категорию малоэтажных строений, можно брать воду для внутреннего потребления даже без использования дополнительной насосной станции.

Завязка в системе геотермального теплового насоса таких элементов как испаритель, компрессор, конденсатор, дроссель и теплообменник служит для приготовления воды для ГВС.

Они замкнуты с помощью стального трубопровода с циркулирующим по нему хладагентом.

Солнечный коллектор для подогрева воды в аккумуляторе увеличивает эффективность системы отопления и горячего водоснабжения. Он, как и электронагреватель может служить для покрытия пиковых нагрузок.

В частности, эффективным средством для этого считается использование системы такого теплообменника, как фанкойл.


Возражение 6

Кто-то может сказать, что при использовании воды из скважины существует опасность загрязнения теплообменников, а расходники для очистки воды стоят дорого.

Проходя по трубопроводу при скорости протоки от 1,2 до 5 м3/ч, вода уже очищается.

Превышения марганца и железа, которые могут вызвать закупорку и снизить эффективность процесса теплообмена контролируются. Вода, проходя через фильтр грубой очистки и теплообменник, не нагревается и не взаимодействует с кислородом, поэтому не дает осадка.

Фильтрация способствуют очищению воды.

Расходные материалы для фильтра грубой очистки стоят не дорого и находятся в свободной продаже.


Возражение 7

Использование ТН только для малоэтажных построек.

Это предубеждение, что тепловые насосы с использованием водяной скважины невозможно применять для производственных и складских помещений или для высоких построек. Якобы, существующая мощность тепловых насосов теряет свою эффективность после того, как вода поднята с глубины 100 м.

Забор тепловой энергии из глубокой скважины – да.

Он способен снабдить теплом только малоэтажные строения. Однако, ведь существует возможность брать воду для контура и из открытого водоема. В этом случае КПД теплового насоса повышается в разы.

Вывод: Бытовой тепловой насос с использованием воды из скважины может считаться наиболее актуальным и эффективным устройством для частного малоэтажного домостроения, производственных объектов и достаточно крупных жилых комплексов. При использовании грунтовой воды эффективность коэффициента преобразователя (СОР) может достигать 5, что позволяет производить добавочные 3-4 кВт тепловой энергии.

Пример: тепловые насосы Ovanter класса Премиум .

Тепловой насос – это естественный источник тепловой энергии с выгодными экономическими и экологическими качествами, отличающийся и не зависящий от традиционных видов отопления.

Выбор теплового насоса с определенным циклом, в нашем случае это вода, строится на основании расчетов при создании технико-экономического проекта и возможности полноценного использования предоставленных условий окружающей среды.

Наиболее подходящим вариантом для нагрева большого количества воды являются тепловые насосы для бассейна.

Это связано с тем, что такое оборудование характеризуется высокой степенью эффективности, а также возможностью экономии энергии и тем самым средством их получения.

  1. Немного об именовании
  2. Принцип работы устройства и работы
  3. Критерии выбора оборудования
  4. Популярные модели
  5. Экспертный совет

Подробнее о встрече

Тепловые насосы для обогрева бассейна — это вариант энергоэффективного оборудования.

При использовании электрических нагревателей и теплообменников на водной основе наблюдается значительное потребление электроэнергии, что часто является проблемой, поскольку невозможно обеспечить достаточную мощность. Кроме того, существует еще одна проблема — высокие тарифы на энергию, которые могут стать важным барьером.

Это совершенно другое дело — тепловые насосы для подогрева бассейна, которые свободно передают тепло из природного источника, воды, почвы или воздуха, в конечный пункт назначения — воду в любом виде бассейна (открытую или закрытую).

Наслаждайтесь видео, сфера применения:

Возможность экономии денег для поддержания объекта в этом случае является следствием способности таких устройств генерировать достаточно большое количество тепла по сравнению со стоимостью потребления энергии.

Сегодня потребитель использует этот тип оборудования для решения различных проблем: организации кондиционирования, отопления и горячего водоснабжения.

Тепловые насосы для обогрева бассейна могут успешно использоваться в бытовых условиях (в частных домах) и для обслуживания гражданских объектов (спортивные комплексы с бассейном и т. Д.).

Форма и основа работы

Тепловые насосы не могут нагревать воду только в автоматическом режиме, но также поддерживают определенную температуру, что значительно облегчает обслуживание здания.

Нагрев бассейна с помощью обычного теплового насоса осуществляется точно таким же принципом, на котором основана работа аналогичного устройства, но он предназначен для работы системы отопления.

Тепло передается потребителю из первичного источника: воды, почвы, воздуха.

Преимущество этого устройства заключается в возможности нагрева бассейна в течение года, поскольку грунтовые воды и глубокие слои почвы имеют постоянную температуру независимо от сезона. Тепловой насос для бассейна отводит тепло от первичного источника с помощью специального элемента — коллектора, который должен обладать отличными теплообменными свойствами.

Этот блок оснащен специальным типом вещества с этиленгликолем или антифризом, основным качеством которого является способность поглощать тепло с минимальной разностью температур.

Обязательным компонентом таких устройств является хладагент, циркулирующий в системе, поочередно чередующийся, затем газ, а затем в жидком состоянии под воздействием давления и температуры.

Тепловой насос для бассейна передает собранную тепло дальше через контур через компрессор, где нагнетается газообразное вещество, сопровождающееся резким повышением температуры.

Это тепло подается на вторичный теплообменник, который является последним соединением в цепи передачи полученной энергии в пуле.

Как выбрать тепловой насос

Каждое оборудование требует тщательного выбора, так как только правильные параметры устройства, соответствующие условиям эксплуатации, могут обеспечить длительную работу оборудования без необходимости ремонта.

Тепловой насос для нагрева бассейна не является исключением и должен выбираться в соответствии со следующими характеристиками:

  • выполнение подразделения с учетом задач, которые оно намеревается решить с его помощью;
  • на основании этого определяется степень продуктивности основного материала, из которого должен быть построен тепловой насос для нагрева бассейна, например, для эффективности 30 кубических метров.

    Цены и описание тепловых насосов для отопления домов

    м / ч, достаточно пластика, в других случаях используются металлические аналоги;

  • возможность замены основных элементов по мере необходимости, желательно учитывать риск возникновения дефектов, а также способы их устранения;
  • наличие и тип системы фильтрации;
  • Тепловой насос для подогрева бассейна также может иметь дополнительные функции (борьба с вредителями, охлаждение, подогрев воды на выходе).

Эффективность такого оборудования очевидна, если модель устройства была правильно выбрана и способна передавать нагрузки, на которые они загружены.

Популярные модели

Если объем пула не превышает 15 кубических метров.

м, а затем довольно компактную версию средней производительности — Azuro BP 30WS. Если вы выберете такой тепловой насос бассейна, его цена будет более чем доступной (56 000 рублей).

Здесь, как и в случае другого метода использования, правило состоит в том, что чем выше эффективность устройства, тем выше его электрические параметры по стоимости, тем выше стоимость.

Эта модель потребляет всего 0,6 кВт, а тепловая мощность почти в пять раз выше — 3 кВт.

Гораздо более эффективным методом является нагревательный насос нагревательного бассейна для французского производителя Zodiac PowerFirst Premium 15MD.

Его стоимость составляет 320 000 рублей, но из-за электрических параметров при использовании этой модели очевидна высокая степень экономии. Потребление энергии соответствует 3,6 кВт, а тепловая мощность — 15,7 кВт.

Оборудование, работающее на другой основе (воздушная вода), имеет среднюю производительность другого производителя (Termonasos) по доступной цене — 76 000 рублей с номинальной мощностью 1,5 кВт и тепловым эквивалентом 7,5 кВт.

Кроме того, Brilix XHP 60 не дороже (78 000 рублей). При работе со следующими параметрами: номинальная мощность — 0,8 кВт, тепловая мощность — 5 кВт.

Тепловой насос для нагрева бассейна этой модели используется для количества воды, не превышающей 20 кубических метров.

Условия эксплуатации

В зависимости от эффективности оборудования производитель может рекомендовать конкретные условия для работы выбранной модели. Например, часто необходимо установить насос над уровнем воды в бассейне, чтобы повысить эффективность работы устройства. Желательно, чтобы устройство работало при приемлемой температуре окружающей среды и воде в бассейне (перед запуском насоса).

Также учитывается степень влажности в непосредственной близости от оборудования.

Для долговременной работы устройства необходимо учитывать основные требования: для получения мощности, подходящей для особых условий; Убедитесь, что тепловой насос не имеет большой перегрузки в течение длительного времени.

Такие тепловые насосы для нагрева бассейна обеспечивают значительную экономию энергии, которая вообще не влияет на эффективность такого оборудования.

Для успешного выбора достаточно связать параметры устройства с условиями, в которых он будет работать.

Например, учитывается номинальная и тепловая мощность, электрические параметры прибора и электрическая сеть, расчетное количество воды, подлежащей нагреву.

Более дорогое оборудование предназначено для обслуживания больших приборов. Основные компоненты таких устройств изготовлены из особо прочных металлов (титана). Регулярное техническое обслуживание этого типа оборудования еще больше продлит срок службы, и, прежде всего, речь идет о системе фильтрации.

Современный тепловой насос воздух вода - устройство исключительно полезное. Даже если температура наружного воздуха приближается к нулю, с его помощью можно успешно обогревать довольно большие помещения. Если тепловые насосы типа «земля-вода» или «вода-вода» проще монтировать в частном доме с просторным участком, то модель типа «воздух-вода» без проблем устанавливается в городских зданиях, как жилых, так и офисных.

Как работает данная система?

Окружающий нас мир полон энергии, нужно только собрать ее и правильно использовать. Для этого и предназначены тепловые насосы воздух вода. С их помощью можно собрать низкопотенциальную энергию из окружающей среды и преобразовать ее в высокопотенциальное тепло, способное обогреть жилище весьма эффективно. Специалисты называют этот процесс обратным принципом Карно, на основе которого работают холодильные установки.

С помощью мощного вентилятора снаружи забирается обычный воздух. Он контактирует с испарителем, внутри которого находится хладагент, циркулирующий по змеевику. Нагреваясь, хладагент испаряется и поступает в компрессор. Здесь он сжимается и нагревается до температуры около 75 градусов и под давлением поступает в конденсатор. Там хладагент конденсируется и переходит в жидкое состояние, отдавая тепло домовой отопительной системе. Жидкий хладагент поступает в испаритель, где нагревается под действием наружного воздуха и т. д. Цикл «нагрев-испарение-сжатие-конденсация» повторяется снова и снова.

Внешний блок теплового насоса воздух-вода размещают на участке, выбирая для этого недалеко от дома место с хорошей циркуляцией воздуха

Преимущества и недостатки такого отопления

Современный тепловой насос типа воздух вода эффективен и позволяет заметно сэкономить на отоплении, поскольку:

  • воздух можно назвать самым доступным и дешевым возобновляемым ресурсом;
  • стоимость монтажа такого агрегата обойдется дешевле, чем установка других видов теплового насоса (грунт-вода, вода-вода и т. п.), а весь процесс осуществляется проще и быстрее;
  • обогрев можно осуществлять даже при отрицательной температуре наружного воздуха;
  • устройство работает почти бесшумно;
  • обеспечивается эффективный воздухообмен внутри помещения;
  • управление установкой можно осуществлять в автоматическом режиме.

Действительно, при сооружении воздушного теплового насоса не нужно бурить скважины или проводить масштабную выемку грунта, не нужно сооружать теплообменник для наружного контура и т. д. Понадобятся два небольших канала, по которым воздух будет забираться, а затем возвращаться наружу. Для этого в земле укладывают два небольших трубопровода. Существуют и модели, не нуждающиеся в таких трубопроводах.

Для теплового насоса «воздух-вода» понадобится большой вентилятор, который будет подавать воздушные потоки к испарителю. Лопасти вентилятора должны быть закрыты решеткой

Недостатков у этой конструкции немного, однако их следует учитывать. Хотя и считается, что воздушный теплонасос может эффективно работать круглый год, все же лучше использовать его в местности с мягкой и теплой зимой. Не рекомендуется включать такой тепловой насос при температуре ниже -7 градусов. При этом КПД системы в зимнее время будет ниже, чем весной или осенью. Хотя производители утверждают, что промышленные модели тепловых насосов этого типа могут вполне успешно работать и при -25 по Цельсию. В местности с суровым климатом самым выгодным вариантом может оказаться сочетание теплового насоса и традиционного отопительного котла, который включается только при наступлении сильных холодов.

Разумеется, для работы любого теплового насоса необходима электроэнергия. На каждый затраченный киловатт электроэнергии устройство позволяет получить 3-4 кВт природной энергии. Поэтому в конечном счете использование теплового насоса для отопления экономически выгодно по сравнению с затратами на обогрев газом, дизельным, твердым топливом или на отопление с помощью электрического котла. Однако забывать о зависимости системы от наличия электроэнергии не стоит.

Алгоритм сборки самодельного агрегата

Почти все элементы воздушного теплового насоса можно изготовить самостоятельно. Компрессор рекомендуется снять с обычной сплит-системы. Как правило, такой прибор имеет подходящие характеристики и работает достаточно бесшумно. Помимо компрессора понадобится ряд материалов:

  • металлический бак из нержавейки, объемом 100 л или более;
  • пластиковая бочка с широкой горловиной;
  • трубы из меди различного диаметра (толщина стенок трубы - не менее 1 мм);
  • набор муфт и переходников;
  • электроды;
  • сливной кран;
  • отвоздушиватель ДУ-15;
  • предохранительный клапан;
  • манометры;
  • устройства для автоматического управления;
  • кронштейны для крепления элементов системы;
  • фреон и др.

Обратите внимание! При включении компрессора потребуется достаточно большой ток, поэтому рекомендованная расчетная нагрузка электросчетчика в доме должна быть не менее 40А.

Чтобы сделать воздушный тепловой насос, необходимо:

  1. Запастись подходящим компрессором и кронштейнами для его монтажа на стену. Чтобы сделать тепловой насос мощностью 9кВт, понадобится компрессор на 7,2 кВт.
  2. Изготовить из медной трубки змеевик, равномерно намотав трубу вокруг баллона нужного диаметра.
  3. Для изготовления конденсатора разрезать пополам стальной бак на 100 литров, вставить внутрь медный змеевик.
  4. Заварить бак и установить резьбовые соединения. Для установки готового конденсатора также понадобятся кронштейны.
  5. Разрезать пластиковую бочку, чтобы сделать испаритель.
  6. Вставить в испаритель медный змеевик из трубы на ¾ дюйма.
  7. Для монтажа испарителя на стену нужен еще один набор L-образных кронштейнов.
  8. Соединить элементы в общую систему.
  9. Пригласить мастера по холодильному оборудованию, который проверит качество сборки и закачает в систему хладагент.

После этого необходимо обеспечить забор наружного воздуха и его сброс для контакта с испарителем, а также подключить устройство к системе отопления дома.

Чтобы сделать змеевик из медной трубки для теплового насоса «воздух-вода», можно взять баллон подходящего диаметра из-под фреона или газа и аккуратно намотать трубку на него

Компрессор для теплового насоса «воздух-вода» можно снять со сплит-системы, удостоверившись, что у него достаточная мощность. Для изготовления конденсатора подойдет металлический бак

Основные принципы работы воздушного теплового насоса представлены в видеоматериале на примере промышленной модели:

Обратите внимание, что если принято решение использовать тепловой насос параллельно с отопительным котлом, рекомендуется при подключении использовать .

Несколько слов о расчетах мощности

Перед началом работ по созданию насоса, следует определиться с его мощностью. Не стоит делать агрегат «с запасом», поскольку это повлечет совсем не нужные материальные расходы. Недостаток мощности скажется на эффективности работы системы, в этом случае в доме будет слишком холодно.

Специалисты для подробных расчетов мощности теплового насоса используют специальные программы, которые позволяют определить и другие параметры, например, площадь медного змеевика и т. п. Народные умельцы поступают проще - используют он-лайн калькуляторы, которые установлены на некоторых профильных сайтах. В специальные поля следует ввести данные о:

  • регионе, в котором находится помещение;
  • общей площади частного дома;
  • высоте потолков в комнатах;
  • степени утепления здания.

На основании этих данных программа выдаст расчетную мощность теплового насоса. Разумеется, чем лучше утеплено здание, тем меньше тепла понадобится для его обогрева, поэтому решить проблему теплоизоляции рекомендуется еще до начала монтажа. Для вас же мы приводим ориентировочные данные для общего ознакомления.

Ориентировочная зависимость необходимой теплопроизводительности ТН от площади дома с хорошими теплоизоляционными свойствами

Технология правильного обслуживания

Работа тепловых насосов регулируется автоматически, поэтому никакого особого ежедневного ухода эта система не требует. Все же рекомендуется периодически, хотя бы раз в год, осматривать все элементы системы, чтобы выявить возможные неполадки и предотвратить их. Владельцу теплового насоса следует:

  1. Проверять состояние всех имеющихся фильтров и прочищать их.
  2. Контролировать температуру масла в компрессоре (оно должно быть теплым).
  3. Удалять мусор, попавший в наружный теплообменник.
  4. Удалять пыль и грязь с температурных датчиков.
  5. Проверять состояние проводки и линии подключения.
  6. Осматривать шланги, трубы и места их соединений, выявляя протечки.
  7. При необходимости смазывать соответствующие точки двигателя и вентилятора.

Обычно компрессор снабжен системой подогрева масла. Перед запуском насоса следует на несколько часов оставить его включенным, чтобы масло успело прогреться. Без этой предосторожности оборудование может очень быстро выйти из строя.

© 2024 4septic.ru - Ливневая канализация, выгребная яма, трубы, сантехника